Optimal A Priori Discretization Error Bounds for Geodesic Finite Elements
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
We prove optimal bounds for the discretization error of geodesic finite elements for variational partial differential equations for functions that map into a nonlinear space. For this, we first generalize the well-known Céa lemma to nonlinear function spaces. In a second step, we prove optimal interpolation error estimates for pointwise interpolation by geodesic finite elements of arbitrary order. These two results are both of independent interest. Together they yield optimal a priori error estimates for a large class of manifold-valued variational problems. We measure the discretization error both intrinsically using an 𝐻1-type Finsler norm and with the 𝐻1-norm using embeddings of the codomain in a linear space. To measure the regularity of the solution, we propose a nonstandard smoothness descriptor for manifold-valued functions, which bounds additional terms not captured by Sobolev norms. As an application, we obtain optimal a priori error estimates for discretizations of smooth harmonic maps using geodesic finite elements, yielding the first high-order scheme for this problem.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1357-1411 |
Seitenumfang | 55 |
Fachzeitschrift | Foundations of Computational Mathematics |
Jahrgang | 15 |
Ausgabenummer | 6 |
Publikationsstatus | Veröffentlicht - 2015 |
Peer-Review-Status | Ja |
Extern publiziert | Ja |
Externe IDs
Scopus | 84945454765 |
---|---|
ORCID | /0000-0003-1093-6374/work/142250572 |
Schlagworte
Schlagwörter
- geodesic finite elements, discretization error, interpolation error, optimal bounds