Onset of fracture in random heterogeneous particle chains
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Buch/Sammelband/Gutachten › Beigetragen › Begutachtung
Beitragende
Abstract
In mechanical systems it is of interest to know the onset of fracture in dependence of the boundary conditions. Here we study a one-dimensional model which allows for an underlying heterogeneous structure in the discrete setting. Such models have recently been studied in the passage to the continuum by means of variational convergence ($\Gamma$-convergence). The $\Gamma$-limit results determine thresholds of the boundary condition, which mark a transition from purely elastic behaviour to the occurrence of a crack. In this article we provide a notion of fracture in the discrete setting and show that its continuum limit yields the same threshold as that obtained from the $\Gamma$-limit. Since the calculation of the fracture threshold is much easier with the new method, we see a good chance that this new approach will turn out useful in applications.
Details
Originalsprache | Englisch |
---|---|
Titel | European Congress of Mathematics |
Herausgeber (Verlag) | EMS Publ. House |
Seiten | 927 |
Seitenumfang | 20 |
ISBN (elektronisch) | 978-3-98547-551-3 |
ISBN (Print) | 978-3-98547-051-8 |
Publikationsstatus | Veröffentlicht - 14 Juli 2023 |
Peer-Review-Status | Ja |
Externe IDs
Mendeley | 403c7c20-0727-347a-8221-03ab14535468 |
---|
Schlagworte
Schlagwörter
- math.AP