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Abstract

In mechanical systems it is of interest to know the onset of fracture in dependence of the
boundary conditions. Here we study a one-dimensional model which allows for an underlying
heterogeneous structure in the discrete setting. Such models have recently been studied in the
passage to the continuum by means of variational convergence (Γ-convergence). The Γ-limit
results determine thresholds of the boundary condition, which mark a transition from purely
elastic behaviour to the occurrence of a crack. In this article we provide a notion of fracture in
the discrete setting and show that its continuum limit yields the same threshold as that obtained
from the Γ-limit. Since the calculation of the fracture threshold is much easier with the new
method, we see a good chance that this new approach will turn out useful in applications.

Key Words: Fracture, discrete system, stochastic homogenization, Γ-convergence, Lennard-Jones
potentials. fracture.

AMS Subject Classification. 74R10, 74Q05, 74A45, 41A60, 74G65.

1 Introduction

The mechanical behaviour of one-dimensional systems has been of interest for decades. Such
systems serve as toy models for higher-dimensional theoretical investigations and are of interest
with respect to one-dimensional structures, see, e.g., [7, 8, 10, 11, 19]. In order to understand the
effective behaviour of materials, the systems are studied as the number of particles tends to infinity.

In this article we focus on the occurrence of cracks and continue a mathematical analysis of the
effective behaviour of one-dimensional discrete systems in the passage to the continuum. In par-
ticular we strive for insight into the threshold for the overall prescribed length ` of a chain. If ` is
smaller than the threshold, the system will show elastic behaviour, whereas cracks are energetically
favoured if ` is larger than the threshold. The interaction potentials between the particles or atoms
of the discrete chain are allowed to be in a large class of convex-concave potentials, which include
for instance the classical Lennard-Jones potentials. The system is then modeled with the help of an
energy functional that is the sum of all the interaction potentials, see (1). Here we restrict to the
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interactions of nearest neighbours; for related studies with interactions beyond nearest neighbours
we refer to [4, 5, 18].

In view of misplaced atoms or of chains consisting of several different kind of particles, we allow
for a random distribution of the interaction potentials, see Assumption 2.1 and (2) for details. The
limit passage is then also referred to as stochastic homogenization, cf., e.g., [1, 6, 9, 16]. As a
special case, also materials with a periodic heterostructure are included, cf. also [15].

An appropriate mathematical technique for the passage of energy functionals from discrete to
continuous systems is based on the notion of Γ-convergence, which is a notion of a variational
convergence and (under coercivity assumptions) ensures that minimizers of the discrete system
converge to minimizers of the system in the continuum limit, see, e.g., [2, 3, 17] and references
cited therein. As the number of particles tends to infinity, the energy functional converges to
a functional that shows the occurrence of cracks in dependence of the boundary conditions that
determine the length of the one-dimensional structure. We stress that, on the discrete level, no
crack has been identified so far. Instead, the mathematical analysis works with a piecewise affine
and thus continuous deformation of the discrete system. Still, a deeper understanding of the crack
formation is also of interest on the discrete level.

In this article, which is partially based on the PhD thesis [12, Chapter 7] of L. Lauerbach, we focus
on the emergence of cracks in atomistic chains. On the level of the continuum limiting model of the
chain, “crack” has a clear meaning – it is the point where the continuum deformation features a
jump and there is no interaction between the different segments separated by the jump. In contrary,
on the level of a discrete chain with n+ 1 particles, the notion of “crack” cannot be unambigously
defined, since always neighbouring particles interact. In the present paper we introduce a notion
of “onset of a crack” at the discrete level for a chain with n+ 1 particles. For simplicity we discuss
the key idea in the case of a chain with n + 1 particles that is composed of (random) potentials
that are convex around its ground state and otherwise concave, i. e. for deformations larger than an
inflection point zfrac. We call a deformation u elastic, if the individual interaction potentials along
the chain are only evaluated in their convex region. In contrary, a deformation that is not elastic
invokes at least one bond that “lives” in the concave region of the corresponding potential. Next, we
consider the energy minimizers un of the chain with n+1 particles and prescribed total length ` > 0.
If the minimizers un are elastic for all n ∈ N, then we do not expect the occurance of crack in the
continuum limit; while in the other case, we expect that minimizing sequeces show a concentration
of strain on a finite number of weak bonds and thus a “crack” emerges in the continuum limit.
Based on this heuristics we intrduce a “critical stretch” `∗n for random chains with n+ 1 particles.
Firstly, we prove that it converges, for n→∞, to the jump-threshold predicted by the zeroth-order
Γ-limit of the discrete energy, which has been obtained earlier in [13]. Secondly, we establish a first
order expansion of the critical stretch and show that the coefficients of the expansion term agree
with the values predicted by the first-order Γ-limit of the discrete energy derived in [13]. Since the
proofs in [13] are technically quite involved, it is interesting to learn that there is a much simpler
method for the derivation of the jump threshold in the continuum limit. We expect that the new
notions of a fracture point and of a jump threshold in the discrete setting turn out to be useful also
in a wider class of applications.

The outline of this article is as follows: In the second section we introduce the model in the discrete
setting, including the assumptions on the large class of interaction potentials in the random setting.
Further we provide the definition of a critical stretch (Definition 2.1), which corresponds to the
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Figure 1: Chain of n + 1 atoms with reference position i
n . The potential Ji describes the nearest

neighbour interaction of atom i and i+ 1, i = 0, ..., n− 1. The characteristic length scale is 1
n and

the interval is [0, 1].

jump threshold. We assert the asymptotic behaviour of the critical stretch as the number of
particles tends to infinity (Theorem 2.1) and compare the limit to the corresponding Γ-convergence
results. Moreover, we consider a rescaled setting, define the rescaled jump threshold and assert its
asymptotic behaviour as n tends to infinity (Theorem 2.2). Finally we compare also this result
with the corresponding Γ-convergences result. All proofs are provided in Section 3.

2 Setup and main results

We consider a chain of n + 1 atoms that in a reference configuration are placed at the sites in
1
nZ ∩ [0, 1], see Figure 1. The deformation of the atoms is referred to as un : 1

nZ ∩ [0, 1] → R.
For the passage from discrete systems to their continuous counterparts it is useful to identify the
discrete functions with their piecewise affine interpolations, i.e., with the functions in

An :=

{
u ∈ C([0, 1]) : u is affine on (i, i+ 1)

1

n
, i ∈ {0, 1, ..., n− 1},monotonically increasing

}
.

We shall also consider clamped boundary conditions for the chain and thus introduce for ` > 0 the
set

An,` := {u ∈ An : u(0) = 0, u(1) = `}.

We consider a discrete energy functional of the form

An,` 3 u 7→ En(u) :=
n−1∑
i=0

1

n
Ji

(
u
(
i+1
n

)
− u

(
i
n

)
1
n

)
=

n−1∑
i=0

1

n
Ji

(
n

(
u

(
i+ 1

n

)
− u

(
i

n

)))
, (1)

where Ji : (0,∞) → R is a potential describing the interaction between the ith atom and its
neighbour to the right. We are interested in random heterogeneous chains of atoms, and thus
assume that the potentials {Ji}i∈Z are random with a distribution that is stationary and ergodic.
We appeal to the following standard setup: Let (Ω,F ,P) denote a probability space and (τi)i∈Z a
family of measurable maps τi : Ω→ Ω such that

• (Group property.) τ0ω = ω for all ω ∈ Ω and τi1+i2 = τi1τi2 for all i1, i2 ∈ Z,

• (Stationarity.) P(τiB) = P(B) for every B ∈ F i ∈ Z,

• (Ergodicity.) For all B ∈ F , it holds (τi(B) = B ∀i ∈ Z)⇒ P(B) = 0 or P(B) = 1.

3



We then consider the energy functional

En : Ω×An → R ∪ {+∞}, En(ω, u) :=
n−1∑
i=0

1

n
J

(
τiω, n

(
u

(
i+ 1

n

)
− u

(
i

n

)))
, (2)

where the random potential satisfies the following assumptions:

Assumption 2.1. Let J : Ω× R→ R ∪ {+∞} be jointly measurable with J(z) =∞ if z ≤ 0. For
P-a.e. ω ∈ Ω the following conditions hold true:

(A1) (Regularity.) J(ω, ·) ∈ C3(0,∞).

(A2) (Behavior at 0 and ∞.) There exists functions ψ+, ψ− ∈ C(0,∞), independent of ω, such
that

lim
z→0+

ψ−(z) =∞ and lim
z→∞

ψ+(z) = 0,

and
J(ω, z) ≥ ψ−(z) for all 0 < z ≤ 1 and |J(ω, z)| ≤ ψ+(z) for all z ≥ 1.

(A3) (Convex-monotone-structure.) Suppose strict convexity close to 0 in form of

zfrac(ω) := sup
{
z > 0 : J ′′(ω, s) := ∂2

sJ(ω, s) > 0 for all s ∈ (0, z)
}
> 0,

and assume that J(ω, ·) is monotonically increasing on [zfrac(ω),∞).

By the previous assumptions J(ω, ·) is strictly convex in (0, zfrac] and admits a unique minimizer
δ(ω) that we call the ground state of J(ω, ·). We assume its non-degeneracy in the following sense:

(A4) (Non-degenerate ground state.) Suppose that there exists a constant c > 0, independent of ω,
such that 1

c > δ(ω) > c and

∀z ∈ δ(ω) + (−c, c) : c ≤ J ′′(ω, z) ≤ 1

c
and |J ′′′(ω, z)| ≤ 1

c
.

Next, we introduce the following central quantities for a random heterogeneous chain with n + 1
particles:

Definition 2.1 (Critical stretch of a chain with n + 1 particles). Consider the situation of As-
sumption 2.1. Let n ∈ N and ω ∈ Ω. The critical stretch `∗n(ω) is defined as the largest number
such that

inf
Ael

n (ω)∩An,`

En(ω, ·) = inf
An,`

En(ω, ·) for all 0 ≤ ` < `∗n(ω),

where we denote by

Ael
n (ω) :=

{
u ∈ An :

ui+1 − ui
1
n

≤ zfrac(τiω) for all i = 0, . . . , n

}

the set of purely elastic deformations.
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The idea behind the above definition is the following: A deformation u ∈ Ael
n (ω) only sees the

strictly convex region of the interaction potentials. Thus, we could replace the potentials J(ω, i, z)
in the definition of the energy function En by (globally) convex potentials with superlinear growth
without changing the energy for deformations in Ael

n (ω). As it is well-known, such energies do
not allow for fracture in the continuum limit. The definition of the critical stretch implies that
a prescribed macroscopic stretch (or compression) ` < `∗n(ω) can be realized by a deformation in
Ael
n (ω) and thus prohibits the formation of a jump, while, for ` > `∗n(ω), deformations with minimial

energy are required to explore the non-convex region of at least one of the interaction potentials.
We may refer to the bonds [i, i+ 1] that are evaluated outside the convex region as “weak” bonds.
If a jump occurs in the limit, then the minimizing sequence shows a concentration of strain in
the weak bonds. We thus expect that `∗n(ω) almost surely converges in the limit n → ∞ to the
continuum fracture threshold that can be defined on the level of the continuum Γ-limit, see below.
In our first result we prove that `∗n indeed converges and we identify its limit, which is the statistical
mean of the ground states:

Theorem 2.1. Let Assumption 2.1 be fulfilled. Then,

lim
n→∞

`∗n(ω) = E[δ] for P-a.e. ω ∈ Ω.

(The proof of Theorem 2.1 can be found in Section 3.1.)

Next we consider the special case when δ(ω) is deterministic, say δ(ω) = 1 for P-a.s. In that case
we establish a first order expansion of `∗n(ω) around its limit E[δ] = 1 of the form

`∗n(ω) ≈ 1 +

√
1

n

√
β

α
,

where β is related to the maximal energy barrier among the random potentials J , and 1/α is the
statistical mean of the curvatures of the random potentials at the ground state.

Theorem 2.2. Let Assumption 2.1 be satisfied and assume δ(ω) = 1 for P-a. e. ω ∈ Ω. Consider

the rescaled jump threshold γ∗n(ω) :=
`∗n(ω)− 1√

1
n

. Then

lim
n→∞

γ∗n(ω) = lim
n→∞

`∗n(ω)− 1√
1
n

=

√
β

α
for P-a.e. ω ∈ Ω,

where

α :=
(
E
[(

1
2J
′′(ω, 1)

)−1
])−1

and β := ess inf
ω∈Ω

(−J(ω, 1)). (3)

(The proof of Theorem 2.2 can be found in Section 3.2.)

We finally relate the above results to the zeroth- and first-order Γ-limits of En subject to clamped
boundary conditions, i.e.

E`n(ω, ·) : L1(0, 1)→ R ∪ {+∞}, E`n(ω, u) :=

{
En(ω, u) if u ∈ An,`,
+∞ else.
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The zeroth-order Γ-limit of the discrete energy yields a homogenized energy functional

E`hom =

∫ 1

0
Jhom(u′(x)),

recalled from [13], and adjusted to the stronger assumptions of this paper and K = 1, where
the homogenized energy density map z 7→ Jhom(z) is convex, lower semicontinuous, monotonically
decreasing and satisfies

lim
z→0+

Jhom(z) = +∞. (4)

Moreover, the minimum values of E`n(ω, ·) and E`hom satisfy

lim
n→∞

inf
u
E`n(ω, u) = min

u
E`hom(u) = Jhom(`),

and therefore can be calculated as

min
u
E`hom(u) = Jhom(`) =

{
Jhom(`) for ` < E[δ],

Jhom(E[δ]) for ` ≥ E[δ].

Hence, the threshold between the elastic and the jump regimes is E[δ], which is identical to the
limit of `∗n(ω), see Theorem 2.1. Secondly, we recall a Γ-limit result from [14] for the rescaled energy
functional

Hn(ω, v) :=
n−1∑
i=0

J
τiω, v ( i+1

n

)
− v

(
i
n

)√
1
n

+ δ(τiω)

− J (τiω, δ(τiω))

 ,

where the Γ-limit is given by

Hγ(v) = α

∫ 1

0

∣∣v′(x)
∣∣2 dx+ β#Sv,

with homogenized elastic coefficient α, jump parameter β and #Sv being the number of jumps of
v.
Moreover, for γ > 0 it holds true that

lim
n→∞

inf
v
Hγn
n (ω, v) = min

v
Hγ(v) = min{αγ2, β},

which yields that the minima of the energy are given by

min
v
Hγ(v) = min{αγ2, β} =


αγ2 if γ <

√
β
α ,

β if γ ≥
√

β
α .

Hence the threshold between elasticity and fracture in the rescaled case is
√

β
α , which equals the

limit of the jump threshold γ∗n in Theorem 2.2.
In summary, although the techniques by which the results are calculated are completely different,
they yield the same result regarding the jump threshold in the continuum setting. The derivation
of the limiting jump threshold with help of the newly defined jump threshold in the discrete setting
is, however, much easier and thus is of interest for applications. It remains an open problem to
analyze corresponding questions in higher dimensional settings. In the following section we provide
the proofs of the above theorems.
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3 Proofs

For the upcoming analysis it is convenient to introduce the notation

Mn(ω, `) := min

{
1

n

n∑
i=1

J(τiω, z
i) :

1

n

n∑
i=1

zi = `

}
to denote the minimum energy of a discrete chain of length `. We begin with an elementary (yet,
convenient) reformulation of the critical stretch `∗n (cf. Definition 2.1).

Lemma 3.1. Consider the situation of Assumption 2.1. Let n ∈ N and ω ∈ Ω. Then, it holds

Mn(ω, `) = min
u∈An,`

En(ω, u). (5)

Moreover, `∗n(ω) is the largest number such that for all 0 < ` < `∗n(ω) there exists z̄ ∈ Rn satisfying

Mn(ω, `) =
1

n

n∑
i=1

J(τiω, z̄
i),

1

n

n∑
i=1

z̄i = `, z̄i ≤ zfrac(τiω) ∀i ∈ {1, . . . , n}. (6)

Proof of Lemma 3.1. The identity (5) follows by a simple change of variables, that is by setting
zi = n(u( in)− u( i−1

n )), and the direct method of the calculus of variations.
Next we give an argument regarding the characterization of `∗n. The definition of `∗n(ω), see Defi-
nition 2.1, and (5) imply

inf
Ael

n (ω)∩An,`

En(ω, ·) = Mn(ω, `) <∞ ∀` ∈ (0, `∗n(ω)).

Since Ael
n (ω) ∩ An,` is compact, there exists ū ∈ Ael

n (ω) ∩ An,` such that

En(ω, ū) = inf
Ael

n (ω)∩An,`

En(ω, ·).

Clearly, z̄ ∈ Rn defined as z̄i = n(ū( in)− ū( i−1
i )) satisfies (6).

Now we suppose that for some ` ≥ `∗n there exists z̄ ∈ Rn satisfying (6). With help of the same
change of variables as above, we find ū ∈ Ael

n (ω) ∩ An,` satisying En(ω, ū) = Mn(ω, `) which
contradicts the definition of `∗n.

Lemma 3.2. Let Assumption 2.1 be satisfied. Then, J(ω, ·) is increasing on [δ(ω),∞) and it holds

zsup
frac := sup{zfrac(ω) : ω ∈ Ω} <∞. (7)

Proof of Lemma 3.2. For convenience we drop the dependence on ω in our notation and simply
write J(z), δ and zfrac instead of J(ω, z), δ(ω) and zfrac(ω), respectively. We first prove that J is
increasing on [δ,∞). On [zfrac,∞) this directly follows from (A3). On [δ, zfrac) this follows from
the convexity of J on (0, zfrac) and the fact that δ minimizes J . Next, we prove (7). We first note
that (A2) and (A3) imply that

∀z ∈ (δ,∞) : J(δ) ≤ J(z) ≤ 0. (8)
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Moreover, (A4) implies that zfrac ≥ δ + c. Thus, for all η ∈ (0, c) we obtain

0 ≥J(zfrac) = J(δ + η) +

∫ zfrac

δ+η
J ′(t) dt ≥ J(δ + η) + J ′(δ + η)(zfrac − (δ + η)), (9)

where the second inequality holds, since J ′ is increasing on (δ+η, zfrac) thanks to (A3). (A4) yields

J ′(δ + η) = J ′(δ + η)− J ′(δ) =

∫ δ+η

δ
J ′′(s) ds ≥ cη.

Thus, by rearranging terms in (9) and appealing to (8) and the previous estimate we get

zfrac ≤ δ + η − J(δ + η)

J ′(δ + η)
≤ δ + η − J(δ)

cη
. (10)

It remains to bound δ = δ(ω) and −J(δ) = −J(ω, δ(ω)) by a constant that is independent of ω.
From (A4) and (A2) we get

δ ∈ (c,
1

c
) and − J(δ) ≤ max

z∈[c, 1
c
+η]

max{−ψ−(z), |ψ+(z)|} =: d <∞, (11)

and thus, (10) yields zfrac ≤ 1
c + d

cη .

3.1 Proof of Theorem 2.1

Proof of Theorem 2.1. Note that ω 7→ δ(ω) is (as a minimizer of a measurable function) measurable.
Moreover, by (11) δ is a non-negative and bounded and thus an L1-random variable. Thus the
ergodic theorem yields

lim
n→∞

1

n

n∑
i=1

δ(τiω) = E[δ], lim
n→∞

1

n

n∑
i=1

J(τiω, δ(τiω)) = E[J(δ)] (12)

for P-a.e. ω ∈ Ω. For the rest of the proof we consider ω ∈ Ω such that (12) is valid and drop the
dependence on ω. In particular, we set δi := δ(τiω), zifrac := zfrac(τiω) and Ji(z) := J(τiω, z).

Step 1. We show that A := lim supn→∞ `
∗
n ≤ E[δ].

W.l.o.g. we suppose A = limn→∞ `
∗
n and prove A ≤ E[δ] by contradiction. Assume that there exists

ε ∈ (0, c) such that A > E[δ] + 3ε. By (12), we find N ∈ N such that

`∗n >
1

n

n∑
i=1

δi + 2ε =: kn for n > N. (13)

In view of Lemma 3.1 there exists a sequence (z̄n)n satisfying for n ≥ N

1

n

n∑
i=1

z̄in = kn,
1

n

n∑
i=1

Ji(z̄
i
n) = Mn(kn), z̄in ≤ zifrac ∀i ∈ {1, . . . , n}. (14)

We claim that

lim sup
n→∞

Mn(kn) ≤E[J(δ)], (15)

lim inf
n→∞

Mn(kn) ≥E[J(δ)] + cε, (16)

8



for some cε > 0. Clearly, (15) and (16) contradict (14)

Substep 1.1. Proof of (15). Let zn ∈ Rn be given by zin := δi for i ≥ 2 and z1
n := δ1 + 2nε. Since

1
n

∑n
i=1 z

i
n = kn, we have

Mn(kn) ≤ 1

n

n∑
i=2

Ji(δi) +
1

n
J1 (δ1 + 2nε) =

1

n

n∑
i=1

Ji(δi) +
1

n
(J1 (δ1 + 2nε)− J1(δ1)).

Hence, (15) follows by (A2) and (12).

Substep 1.2. Proof of (16). Let z̄n be as in (14) and set

In :=
{
i ∈ {1, ..., n} : z̄in > δi + ε

}
.

Obviously, it holds 0 ≤ |In|/n ≤ 1 and we claim

|In|
n
≥ ε

zsup
frac

> 0 for all n ∈ N, (17)

where zsup
frac ∈ (0,∞) is as in Lemma 3.2. Indeed,

1

n

n∑
i=1

δi + 2ε = kn =
1

n

n∑
i=1

z̄in =
1

n

∑
i∈In

z̄in +
1

n

∑
i/∈In

z̄in
(14)

≤ |In|
n
zsup

frac +
1

n

n∑
i=1

(δi + ε)

implies (17). Finally, using the monotonicity of Ji on (δi,∞) (see Lemma 3.2) and (A4), we obtain

1

n

n∑
i=1

Ji(z̄
i
n) =

1

n

∑
i∈In

Ji(z̄
i
n) +

1

n

∑
i/∈In

Ji(z̄
i
n) ≥ 1

n

∑
i∈In

Ji(δi + ε) +
1

n

∑
i/∈In

Ji(δi)

≥ 1

n

∑
i∈In

(
Ji(δi) + 1

2cε
2
)

+
1

n

∑
i/∈In

Ji(δi) =
1

n

n∑
i=1

Ji(δi) +
|In|
n

1

2
cε2,

where c > 0 is as in (A4). Sending n→∞, we obtain with help of (12) and (17) the claim (16).

Step 2. We claim A := lim infn→∞ `
∗
n ≥ E[δ].

For all ε > 0, we show

`∗n ≥
1

n

n∑
i=1

δi − ε =: kn ∀n ∈ N, (18)

which in combination with (12) implies A := lim infn→∞ `
∗
n ≥ E[δ] by the arbitrariness of ε > 0.

Let z̄n be such that
1

n

n∑
i=1

z̄in = kn,
1

n

n∑
i=1

Ji(z̄
i
n) = Mn(kn).

We show z̄in ≤ δi < zifrac ∀i ∈ {1, . . . , n}, which obviously implies (18). Indeed, the optimality
condition for z̄n implies that there exists a Lagrange-Multiplier Λ ∈ R such that Λ = J ′i(z̄

i
n) for all

i ∈ {1, . . . , n}. Since 1
n

∑n
i=1(z̄in − δi) ≤ −ε there exists î ∈ {1, . . . , n} such that z̄ în ∈ (0, δi) and

thus J ′
î
(z̄ în) < 0. Hence J ′i(z̄

i
n) < 0 for all i ∈ {1, . . . , n}. Since J ′i ≥ 0 on (δi,∞) by Lemma 3.2, we

conclude that z̄in ≤ δi ≤ zifrac and thus `∗n ≥ kn by Lemma 3.1.
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3.2 Proof of Theorem 2.2

We begin with a preliminary structure result for minimizers of the minimum problem in the defi-
nition of Mn(ω, 1 + n−

1
2D) for some D > 0 see (5).

Proposition 3.3. Let Assumption 2.1 be satisfied and assume δ(ω) = 1 for P-a.e. ω ∈ Ω. Fix
D > 0. There exist N̄ ∈ N and a sequence (Nn) satisfying Nn → ∞ such that the following
statements hold true for P-a.e. ω ∈ Ω and n ≥ N̄ :
Let z̄n ∈ Rn be such that

1

n

n∑
i=1

z̄in = 1 + n−
1
2D and

1

n

n∑
i=1

J(τiω, z̄
i
n) = Mn(ω, 1 + n−

1
2D). (19)

Then, it holds

z̄in ∈ [1, 1 + c−2n−
1
2D] ∪ [Nn,∞) for all i ∈ {1, ..., n}, (20)

where c > 0 is as in (A4).

Proof of Proposition 3.3. We consider ω ∈ Ω such that δ(τiω) = 1 ∀i ∈ N and drop the dependence
on ω. Moreover, we use the shorthand notation zifrac := zfrac(τiω) and Ji(z) := J(τiω, z).

Step 1. We show that

0 ≤ J ′(z̄in) ≤ 1

c
Dn−

1
2 for all i ∈ {1, ..., n} (21)

where c > 0 is as in (A4).

By the optimality condition for z̄n there exists a Lagrange-Multiplier Λ ∈ R such that Λ = J ′i(z̄
i
n)

for all i ∈ {1, . . . , n}. Since 1
n

∑n
i=1 z̄

i
n = 1 + n−

1
2D, there exists i1 ∈ {1, . . . , n} such that z̄i1n ≥

1 + n−
1
2D > 1. Lemma 3.2 and the assumption δ(τiω) = 1 imply that Ji is increasing on (1,∞)

and thus we have Λ ≥ 0. Moreover, there exists i2 ∈ {1, . . . , n} such that z̄i2n ≤ 1 + n−
1
2D. For n

sufficiently large such that n−
1
2D < c, where c > 0 as in (A4), we have (using that J ′i(1) = 0)

0 ≤ Λ = J ′i2(z̄i2n ) =

∫ z̄
i2
n

1
J ′′i2(t) dt

(A4)

≤ 1

c
n−

1
2D.

Since Λ = J ′i(z̄
i
n) for all i ∈ {1, . . . , n} the claim (21) follows.

Step 2. Argument for (20).
We firstly observe that (21) implies 1 ≤ z̄in for all i ∈ {1, . . . , n} (recall J ′i(z) < 0 on (0, 1)). The
remaining estimates of (20) are proven in three steps.

Substep 2.1. We claim that for n sufficiently large, z̄in ≤ zifrac implies z̄in ≤ 1 + c−2n−
1
2D, where

c > 0 is as in (A4). Indeed, using J ′′i (s) > 0 on (0, zifrac) and (A4), we deduce from z̄in ≤ zifrac and
n sufficiently large that

c−1Dn−
1
2

(21)

≥ J ′i
(
z̄in
)

=

∫ z̄in

1
J ′′i (t) dt

(A4)

≥ cmin{z̄in − 1, c}.

From the above inequality we deduce that zin − 1 ≥ c implies n ≤ D2/c6. Hence, zin − 1 < c and

thus 1 ≤ zin ≤ 1 + c−2Dn−
1
2 for n > D2/c6.
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Substep 2.2. There exists M <∞, depending only on ψ−(1) from (A2) and c > 0 from (A4), such
that

sup
n∈N
|Iwn | ≤M where Iwn :=

{
i ∈ {1, ..., n} : z̄in ≥ zifrac

}
. (22)

Suppose |Iωn | ≥ 2 and consider some in ∈ Iωn . Define

ẑin :=


z̄in if i /∈ Iωn ,
1 if i ∈ Iωn \ {in},
1 +

∑
i∈Iωn (z̄in − 1) if i = in.

(23)

By construction, we have
∑n

i=1 z̄
i
n =

∑n
i=1 ẑ

i
n and thus by (19)

0 ≥
n∑
i=1

(
Ji(z̄

i
n)− Ji(ẑin)

)
=

∑
i∈Iωn \{in}

(Ji(z̄
i
n)− Ji(1)) + Jin(z̄inn )− Jin(ẑinn ). (24)

By the monotonicity of Ji on (1,∞), (A3) and (A4), we find η = η(c) > 0, where c > 0 is as in
(A4), such that

Ji(z̄
i
n)− Ji(1) ≥ Ji(zifrac)− Ji(1) ≥ η ∀i ∈ Iwn . (25)

Moreover, using ẑinn ≥ 1 and thus Jin(ẑinn ) ≤ 0 (wich follows from the monotonicity of Ji on (1,∞)
and (A2)) we obtain

Jin(z̄in)− Jin(ẑinn ) ≥ Jin(1)
(A2)

≥ ψ−(1). (26)

Combining (24)–(26), we deduce the uniform bound |Iωn | ≤ 1− η−1ψ−(1).

Substep 2.3. We show that there exists (Nn) satisfying Nn →∞ as n→∞ such that z̄in ≥ Nn for
all i ∈ Iwn , where Iwn is defined in (22).
We argue by contradiction and assume that there exists A ∈ [1,∞) and an index î ∈ Iwn such that

z̄ în ≤ A. For n sufficiently large, we show that this contradicts (19). Define

z̃in :=


1 if i = î,

z̄in + (n− |Iwn |)−1(z̄ în − 1) if i /∈ Iωn ,
z̄in if i ∈ Iwn \ {̂i}.

(27)

By construction, we have
∑n

i=1 z̃
i
n =

∑n
i=1 z̄

i
n. Since z̄n is a minimizer (see(19)),

0 ≥
n∑
i=1

(Ji(z̄
i
n)− Ji(z̃in)) = Jî(z̄

î
n)− Jî(1) +

∑
i/∈Iωn

(Ji(z̄
i
n)− Ji(z̃in)).

By (25) we have Jî(z̄
î
n)− Jî(1) ≥ η(c) > 0. To obtain a contradiction, it suffices to show that the

second term on the right-hand side vanishes as n tends to infinity. This can be seen as follows: On
the one hand, we have z̄in ∈ [1, 1 + c−2n−

1
2D] for all i /∈ Iwn by Substep 2.1, and on the other hand,

we have (n − |Iwn |)−1(z̄ în − 1) ≤ (n −M)−1(A − 1) thanks to |Iwn | ≤ M . Hence, z̄in, z̃
i
n ∈ [1, 1 + c

2 ]

11



for n sufficiently large (depending only on c, D, M and A). Now, a quadratic Taylor expansion of
Ji at z̄in yields (using |J ′′(z)| ≤ c−1 for z ∈ [1, 1 + c), see (A4))

n∑
i=1
i/∈Iωn

|Ji(z̄in)− Ji(z̃in)| ≤
n∑
i=1

(
|J ′i(z̄in)|(n−M)−1(A− 1) + c−1(n−M)−2(A− 1)2

)
(21)

≤ n(n−M)−1c−1(A− 1)
(
n−

1
2D + (A− 1)(n−M)−1

)
≤ Cn−

1
2 ,

where C <∞ depends only on A, c,D and M .

Proof of Theorem 2.2. By the ergodic theorem, it holds

lim
n→∞

1

n

n∑
i=1

J ′′(τiω, 1)−1 = E[J ′′(1)−1], lim
n→∞

βn(ω) = β (28)

for P-a.e. ω ∈ Ω, where β is defined in (3) and

βn(ω) := min{−J(τiω, 1) : i ∈ {1, . . . , n}}. (29)

In Step 3 below we provide an argument for the limit βn → β.
In Step 1 and Step 2, we consider ω ∈ Ω such that (28) and the conclusion of Proposition 3.3 are
valid. Moreover, we drop the dependence on ω and use the shorthand notation zifrac := zfrac(τiω)
and Ji(z) := J(τiω, z).

Step 1. We prove A := lim supn→∞ γ
∗
n ≤

√
β

α
by contradiction: Assume that there exists ε > 0

and N ∈ N such that

`∗n > 1 + n−
1
2

√
β

α
(1 + ε) =: kn for n > N. (30)

In view of Lemma 3.1 there exists (z̄n)n satisfying

1

n

n∑
i=1

z̄in = kn,
1

n

n∑
i=1

Ji(z̄
i
n) = Mn(kn) z̄in ≤ zifrac ∀i ∈ {1, . . . , n}. (31)

We show

lim sup
n→∞

n

(
Mn(kn)− 1

n

n∑
i=1

Ji(1)

)
≤β, (32)

lim inf
n→∞

n

(
1

n

n∑
i=1

Ji(z̄
i
n)− 1

n

n∑
i=1

Ji(1)

)
≥β(1 + ε)2. (33)

Clearly, (32) and (33) contradict (31) for n sufficiently large.

Substep 1.1. Argument for (33).

12



We claim that there exists K <∞ such that for all n sufficiently large

n

(
1

n

n∑
i=1

Ji(z̄
i
n)− 1

n

n∑
i=1

Ji(1)

)
≥
(

1

n

n∑
i=1

(
1
2J
′′
i (1)

)−1
)−1β

α
(1 + ε)2 − K√

n
, (34)

where ᾱ and β are defined in (3). Note that (28) and (34) imply (33).

We prove (34). By (30), (31), and Proposition 3.3 (applied with D =
√

β
α(1 + ε)2), we get

1 ≤ zin ≤ 1 + n−
1
2C (35)

for some C <∞ independent of n. Hence, a Taylor expansion yields

n∑
i=1

Ji(z̄
i
n) =

n∑
i=1

Ji(1) +
1

2

n∑
i=1

J ′′i (1)
(
z̄in − 1

)2
+

1

6

n∑
i=1

J ′′′i (ξin)
(
z̄in − 1

)3
, (36)

where ξin ∈
[
1, z̄in

]
. To estimate the second term on the right-hand side, note that Cauchy-Schwarz’

inequality yields ( n∑
i=1

(z̄in − 1)
)2
≤
(1

2

n∑
i=1

J ′′i (1)(z̄in − 1)2
)( n∑

i=1

(1
2J
′′
i (1))−1

)
.

Combined with the identity
∑n

i=1(z̄in − 1) = n(kn − 1) =
√
n
√

β
α(1 + ε) we get

(
1

n

n∑
i=1

(
1
2J
′′
i (1)

)−1
)−1β

α
(1 + ε)2 ≤ 1

2

n∑
i=1

J ′′i (1)
(
z̄in − 1

)2
. (37)

Moreover, (35) and (A4) imply for n sufficiently large

1

6

n∑
i=1

J ′′′i (ξin)
(
z̄in − 1

)3 ≥ − C3

6c
√
n
. (38)

Clearly, (36)–(38) imply (34) (with K = C3

6c ).

Substep 1.2. Argument for (32).
For every n ∈ N, we choose în ∈ {1, . . . , n} such that −Jîn(1) = βn (see (29)) and define zn ∈ Rn
as

zin =

{
1 if i ∈ {1, . . . , n} \ {̂in}
1 + n(kn − 1) if i = în

.

Since 1
n

∑n
i=1 z

i
n = kn = 1 + n−

1
2

√
β
α(1 + ε), we have

n

(
Mn(kn)− 1

n

n∑
i=1

Ji(1)

)
≤Jîn(1 + n(kn − 1))− Jîn(1)

≤ψ+

(
1 +
√
n

√
β

α
(1 + ε)

)
+ βn,
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where the second inequality holds by (A2) and the choice of în. Now, (32) follows from (28) and
assumption (A2).

Step 2. Proof of A := lim infn→∞ γ
∗
n ≥

√
β
α .

We show that for every ε > 0 there exists N̄ ∈ N such that

`∗n ≥ 1 + n−
1
2

√
β

α
(1− ε) =: kn for n > N. (39)

Note that (39) implies lim infn→∞ γ
∗
n ≥

√
β
α(1− ε) for all ε > 0, and thus the claim.

Let (z̄n)n be a sequence satisfying for all n ∈ N,

1

n

n∑
i=1

z̄in = kn, Mn(kn) =
1

n

n∑
i=1

Ji(z̄
i
n). (40)

To prove (39), we only need to show that

zin ≤ zifrac for all i ∈ {1, . . . , n} for n sufficiently large, (41)

depending only on α β, c, and ε > 0.

Substep 2.1. We show that

lim sup
n→∞

n

(
Mn(kn)− 1

n

n∑
i=1

Ji(1)

)
≤ β(1− ε). (42)

Set

ẑin := 1 + n−
1
2

√
β

α
(1− ε)

(
1

n

n∑
i=1

1

αi

)−1
1

αi
,

where αi := 1
2J
′′
i (1). By construction, we have

1

n

n∑
i=1

ẑin = kn, 0 ≤ ẑin − 1 ≤ n−
1
2C (43)

where C < ∞ depends only on α, β and c > 0 from (A4) (note that (A4) implies αi ≤ 1
2c and

1
αi
≤ 2

c ). Hence, a Taylor expansion of Ji at 1 and (A4) yield for n sufficiently large

n∑
i=1

(
Ji(ẑ

i
n)− Ji(1)

)
≤

n∑
i=1

αi
(
ẑin − 1

)2
+

1

6c

n∑
i=1

(
ẑin − 1

)3
≤ β

α
(1− ε)2

(
1

n

n∑
i=1

1

αi

)−1

+
C3

6c
n−

1
2 ,

where C <∞ is the same as in (43). Finally, (28) implies ( 1
n

∑n
i=1

1
αi

)−1 ≤ α(1+ε) for n sufficiently
large and thus (42) follows.
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Substep 2.2. We now prove (41) by contraposition. Suppose z̄ în > z îfrac for some î ∈ {1, . . . , n}.
Then Proposition 3.3 yields z̄ în ≥ Nn for some (Nn) withNn →∞, and thus Jî(z̄

î
n) ≥ − sups≥Nn

ψ+(s)
by (A2). Hence, with Ji(z̄

i
n) ≥ Ji(1) and −Jî(1) ≥ β, we therefore get

n∑
i=1

(Ji(z̄
i
n)− Ji(1)) ≥ Jî(z̄

î
n)− Jî(1) ≥ β − sup

s≥Nn

ψ+(s).

Since sups≥Nn
ψ+(s)→ 0 for n→∞, the above lower bound combined with the upper bound (42)

and (40) yields a contradiction for n sufficiently large, and thus (41) follows.

Step 3. Argument for βn → β almost surely in (28).
The sequence (βn(ω))n ⊂ R is decreasing and it holds βn(ω) ≥ β for all n ∈ N. Hence, there exists
β̂(ω) ≥ β such that

lim
n→∞

βn(ω) = β̂(ω) ≥ β.

It remains to show that β̂(ω) = β for P-a.e. ω ∈ Ω. We argue by contradiction and therefore
suppose that there exist ε > 0 and a set Ω′ ⊂ Ω with positive measure such that β̂(ω) ≥ β + ε for
all ω ∈ Ω′. Then we obtain for all ω ∈ Ω′ that

lim sup
n→∞

1

n

n∑
i=1

χ{−J(τiω,1)≤β+ 1
2
ε}(τiω) = 0,

where χA denotes the indicator function. Clearly this contradicts the ergodic theorem and the
definition of β in the form

lim
n→∞

1

n

n∑
i=1

χ{−J(τiω,1)≤β+ 1
2
ε} = E

[
χ{−J(1)≤β+ 1

2
ε}
]
> 0 for P-a.e. ω ∈ Ω.

Hence the theorem is proven.
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