One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin films

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Gaurav Giri - , Stanford University (Autor:in)
  • Ruipeng Li - , King Abdullah University of Science and Technology (Autor:in)
  • Detlef M. Smilgies - , Cornell University (Autor:in)
  • Er Qiang Li - , King Abdullah University of Science and Technology (Autor:in)
  • Ying Diao - , Stanford University (Autor:in)
  • Kristina M. Lenn - , Cornell University (Autor:in)
  • Melanie Chiu - , Stanford University (Autor:in)
  • Debora W. Lin - , Stanford University (Autor:in)
  • Ranulfo Allen - , Stanford University (Autor:in)
  • Julia Reinspach - , Stanford University (Autor:in)
  • Stefan C.B. Mannsfeld - , SLAC National Accelerator Laboratory (Autor:in)
  • Sigurdur T. Thoroddsen - , King Abdullah University of Science and Technology (Autor:in)
  • Paulette Clancy - , Cornell University (Autor:in)
  • Zhenan Bao - , Stanford University (Autor:in)
  • Aram Amassian - , King Abdullah University of Science and Technology (Autor:in)

Abstract

A crystal's structure has significant impact on its resulting biological, physical, optical and electronic properties. In organic electronics, 6,13(bis-triisopropylsilylethynyl)pentacene (TIPS-pentacene), a small-molecule organic semiconductor, adopts metastable polymorphs possessing significantly faster charge transport than the equilibrium crystal when deposited using the solution-shearing method. Here, we use a combination of high-speed polarized optical microscopy, in situ microbeam grazing incidence wide-angle X-ray-scattering and molecular simulations to understand the mechanism behind formation of metastable TIPS-pentacene polymorphs. We observe that thin-film crystallization occurs first at the air-solution interface, and nanoscale vertical spatial confinement of the solution results in formation of metastable polymorphs, a one-dimensional and large-area analogy to crystallization of polymorphs in nanoporous matrices. We demonstrate that metastable polymorphism can be tuned with unprecedented control and produced over large areas by either varying physical confinement conditions or by tuning energetic conditions during crystallization through use of solvent molecules of various sizes.

Details

OriginalspracheEnglisch
Aufsatznummer3573
FachzeitschriftNature communications
Jahrgang5
PublikationsstatusVeröffentlicht - 16 Apr. 2014
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 24736391