Numerical study on the influence of cell gas on the compression behavior of expanded polypropylene

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Expanded polypropylene (EPP) bead foam mainly consists of entrapped gas within closed polymer cells. This numerical study presents a method to account for the influence of this entrapped gas on the compression behavior of EPP foam. The method developed combines a finite element (FE) model of the foam structure with a smoothed particle hydrodynamics model to simulate the effect of the cell gas. The foam structure is modeled using the open-source software neper, the FE simulations are conducted using the explicit FE solver of LS-Dyna. Numerically obtained stress–strain curves for the investigated foam materials, both with and without considering the cell gas, are compared with experimental data from tests using a specially designed vacuum test chamber. The comparison shows a good agreement between numerical and experimental results, indicating that entrapped cell gas increases the structural stiffness under compression. However, in load-hold-unload tests, the numerical model fails to accurately capture the stress relaxation behavior observed during the hold phase of the experiment. This study highlights the significant impact of cell gas on the compression behavior of EPP foam and the need for further refinement in simulation strategy to capture effects like the stress relaxation and multiaxial loading.

Details

OriginalspracheEnglisch
Aufsatznummere55962
Seitenumfang13
FachzeitschriftJournal of Applied Polymer Science
Jahrgang141
Ausgabenummer38
PublikationsstatusElektronische Veröffentlichung vor Drucklegung - 8 Juli 2024
Peer-Review-StatusJa

Externe IDs

Scopus 85197697831
ORCID /0000-0002-8504-2095/work/163762642
ORCID /0000-0003-1370-064X/work/163765691
ORCID /0000-0003-3624-3242/work/163766605
WOS 001263956500001

Schlagworte

Schlagwörter

  • bead foam, entrapped cell gas, expanded polypropylene, numerical simulation