Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Khaled Parvez - , Max-Planck-Institut für Polymerforschung (Autor:in)
  • Shubin Yang - , Max-Planck-Institut für Polymerforschung (Autor:in)
  • Yenny Hernandez - , Max-Planck-Institut für Polymerforschung (Autor:in)
  • Andreas Winter - , Universität Bielefeld (Autor:in)
  • Andrey Turchanin - , Universität Bielefeld (Autor:in)
  • Xinliang Feng - , Max-Planck-Institut für Polymerforschung (Autor:in)
  • Klaus Müllen - , Max-Planck-Institut für Polymerforschung (Autor:in)

Abstract

The high cost of platinum-based electrocatalysts for the oxygen reduction reaction (ORR) has hindered the practical application of fuel cells. Thanks to its unique chemical and structural properties, nitrogen-doped graphene (NG) is among the most promising metal-free catalysts for replacing platinum. In this work, we have developed a cost-effective synthesis of NG by using cyanamide as a nitrogen source and graphene oxide as a precursor, which led to high and controllable nitrogen contents (4.0% to 12.0%) after pyrolysis. NG thermally treated at 900 °C shows a stable methanol crossover effect, high current density (6.67 mA cm-2), and durability (∼87% after 10-000 cycles) when catalyzing ORR in alkaline solution. Further, iron (Fe) nanoparticles could be incorporated into NG with the aid of Fe(III) chloride in the synthetic process. This allows one to examine the influence of non-noble metals on the electrocatalytic performance. Remarkably, we found that NG supported with 5 wt % Fe nanoparticles displayed an excellent methanol crossover effect and high current density (8.20 mA cm-2) in an alkaline solution. Moreover, Fe-incorporated NG showed almost four-electron transfer processes and superior stability in both alkaline (∼94%) and acidic (∼85%) solutions, which outperformed the platinum and NG-based catalysts.

Details

OriginalspracheEnglisch
Seiten (von - bis)9541-9550
Seitenumfang10
FachzeitschriftACS nano
Jahrgang6
Ausgabenummer11
PublikationsstatusVeröffentlicht - 27 Nov. 2012
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 23050839

Schlagworte

Schlagwörter

  • graphene oxide, iron coordination, nitrogen-doped graphene, oxygen reduction reaction, stability