Network under Control: Multi-Vehicle E2E Measurements for AI-based QoS Prediction

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

In the future, mobility use cases will depend on precise predictions, with Quality of Service (QoS) prediction being a prominent example. This paper presents realistic measurements from today's vehicles to support robust QoS prediction in the future. Based on a dedicated and controlled measurement campaign, we highlight aspects of the wireless environment and the device characteristics, like the sampling rates, that influence the collected datasets. If not properly handled, such characteristics might hinder the performance of Artificial Intelligence-based algorithms for QoS prediction. Therefore, we also provide insights on dataset characteristics that should be further used to enable easier adoption of AI-based algorithms. New AI-based algorithms should be able to operate in very diverse radio environments with data captured from different devices. We provide several examples that highlight the importance of thoroughly understanding the datasets and their dynamics.

Details

OriginalspracheEnglisch
Titel2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seiten1432-1438
Seitenumfang7
ISBN (elektronisch)9781728175867
PublikationsstatusVeröffentlicht - 13 Sept. 2021
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)
Band2021-September

Konferenz

Titel2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications
KurztitelPIMRC 2021
Veranstaltungsnummer32
Dauer13 - 16 September 2021
Webseite
OrtOnline
StadtHelsinki
LandFinnland

Externe IDs

ORCID /0000-0001-8469-9573/work/161891088

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Artificial Intelligence, E2E Measurements, Machine Learning, Network Dynamics, Quality of Service Prediction