Negative Latency in Computer Vision: A Key to Efficient Edge Offloading

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Object recognition tasks are commonplace in industrial and medical applications, but resource-limited end devices common to the Internet of Things (IoT) are limited in capabilities and commonly require offloading of compute-intensive tasks. We evaluate the negative latency concept as a new approach to image detection and object recognition applications in low-bandwidth scenarios without a feedback channel. We employ image quality assessment and risk estimators associated with image quality degradation for progressively transmitted images to realize negative latency. Our comprehensive evaluation on image recognition and object detection tasks shows that image quality assessment over progressively transmitted images can be enabled by using risk estimators associated with image quality degradation during progressive transmission. In turn, our approach provides the framework for service latency and resource use reductions.

Details

OriginalspracheEnglisch
TitelGLOBECOM 2024 - 2024 IEEE Global Communications Conference
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seiten3110-3115
Seitenumfang6
ISBN (elektronisch)979-8-3503-5125-5
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE Conference on Global Communications (GLOBECOM)
ISSN1930-529X

Konferenz

Titel2024 IEEE Global Communications Conference
UntertitelConnecting the Intelligent World through Africa
KurztitelGLOBECOM 2024
Dauer8 - 12 Dezember 2024
Webseite
OrtCape Town International Conference Centre
StadtCape Town
LandSüdafrika

Externe IDs

ORCID /0000-0001-8469-9573/work/184003927
ORCID /0000-0002-4590-1908/work/184006270

Schlagworte

Schlagwörter

  • Computer vision, Edge computing, Internet of Things