Nanosensors in clinical development of CAR-T cell immunotherapy
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Immunotherapy using CAR-T cells is a new technological paradigm for cancer treatment. To avoid severe side effects and tumor escape variants observed for conventional CAR-T cells approach, adaptor CAR technologies are under development, where intermediate target modules redirect immune cells against cancer. In this work, silicon nanowire field-effect transistors are used to develop target modules for an optimized CAR-T cell operation. Focusing on a library of seven variants of E5B9 peptide that is used as CAR targeting epitope, we performed multiplexed binding tests using nanosensor chips. These peptides had been immobilized onto the sensor to compare the transistor signals upon titration with anti-La 5B9 antibodies. The correlation of binding affinities and sensor sensitivities enabled a selection of candidates for the interaction between CAR and target modules. An extremely low detection limit was observed for the sensor, down to femtomolar concentration, outperforming the current assay of the same purpose. Finally, the CAR T-cells redirection capability of selected peptides in target modules was proven successful in an in-vitro cytotoxicity assay. Our results open the perspective for the nanosensors to go beyond the early diagnostics in clinical cancer research towards developing and monitoring immunotherapeutic treatment, where the quantitative analysis with the standard techniques is limited.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 114124 |
Seitenumfang | 8 |
Fachzeitschrift | Biosensors and Bioelectronics |
Jahrgang | 206 |
Publikationsstatus | Veröffentlicht - 15 Juni 2022 |
Peer-Review-Status | Ja |
Externe IDs
PubMed | 35272215 |
---|---|
WOS | 000784203000004 |
ORCID | /0000-0002-9899-1409/work/142249200 |
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
- Theoretische Chemie: Moleküle, Materialien, Oberflächen
- Theoretische Chemie: Elektronenstruktur, Dynamik, Simulation
- Theoretische Physik der kondensierten Materie
- Computergestütztes Werkstoffdesign und Simulation von Werkstoffverhalten von atomistischer bis mikroskopischer Skala
- Herstellung und Eigenschaften von Funktionsmaterialien
- Experimentelle Physik der kondensierten Materie
Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- Cancer, CAR-T cells, Field-effect transistor, Immunotherapy, Nanosensor, Silicon nanowires, T-Lymphocytes, Immunotherapy, Adoptive/methods, Biosensing Techniques, Nanowires