Nanorattles with tailored electric field enhancement

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Max J. Schnepf - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Martin Mayer - , Center for Advancing Electronics Dresden (cfaed), Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Christian Kuttner - , Leibniz-Institut für Polymerforschung Dresden, Technische Universität Dresden (Autor:in)
  • Moritz Tebbe - , Universität Bayreuth, University of Toronto (Autor:in)
  • Daniel Wolf - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Martin Dulle - , Universität Bayreuth (Autor:in)
  • Thomas Altantzis - , University of Antwerp (Autor:in)
  • Petr Formanek - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Stephan Förster - , Universität Bayreuth (Autor:in)
  • Sara Bals - , University of Antwerp (Autor:in)
  • Tobias A.F. König - , Leibniz-Institut für Polymerforschung Dresden, Technische Universität Dresden (Autor:in)
  • Andreas Fery - , Professur für Physikalische Chemie polymerer Materialien (gB/IPF) (PC5), Center for Advancing Electronics Dresden (cfaed), Leibniz-Institut für Polymerforschung Dresden (Autor:in)

Abstract

Nanorattles are metallic core-shell particles with core and shell separated by a dielectric spacer. These nanorattles have been identified as a promising class of nanoparticles, due to their extraordinary high electric-field enhancement inside the cavity. Limiting factors are reproducibility and loss of axial symmetry owing to the movable metal core; movement of the core results in fluctuation of the nanocavity dimensions and commensurate variations in enhancement factor. We present a novel synthetic approach for the robust fixation of the central gold rod within a well-defined box, which results in an axisymmetric nanorattle. We determine the structure of the resulting axisymmetric nanorattles by advanced transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). Optical absorption and scattering cross-sections obtained from UV-vis-NIR spectroscopy quantitatively agree with finite-difference time-domain (FDTD) simulations based on the structural model derived from SAXS. The predictions of high and homogenous field enhancement are evidenced by scanning TEM electron energy loss spectroscopy (STEM-EELS) measurement on single-particle level. Thus, comprehensive understanding of structural and optical properties is achieved for this class of nanoparticles, paving the way for photonic applications where a defined and robust unit cell is crucial.

Details

OriginalspracheEnglisch
Seiten (von - bis)9376-9385
Seitenumfang10
FachzeitschriftNanoscale
Jahrgang9
Ausgabenummer27
PublikationsstatusVeröffentlicht - 21 Juli 2017
Peer-Review-StatusJa

Externe IDs

PubMed 28656183