Nanocrystal Assemblies: Current Advances and Open Problems

Publikation: Beitrag in FachzeitschriftÜbersichtsartikel (Review)BeigetragenBegutachtung

Beitragende

  • Carlos L. Bassani - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Greg van Anders - , Queen's University Kingston (Autor:in)
  • Uri Banin - , Hebrew University of Jerusalem (Autor:in)
  • Dmitry Baranov - , Lund University (Autor:in)
  • Qian Chen - , University of Illinois at Urbana-Champaign (Autor:in)
  • Marjolein Dijkstra - , Utrecht University (Autor:in)
  • Michael S. Dimitriyev - , University of Massachusetts, Texas A&M University (Autor:in)
  • Efi Efrati - , Weizmann Institute of Science, The University of Chicago (Autor:in)
  • Jordi Faraudo - , Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) (Autor:in)
  • Oleg Gang - , Columbia University, Brookhaven National Laboratory (Autor:in)
  • Nicola Gaston - , The University of Auckland (Autor:in)
  • Ramin Golestanian - , Max Planck Institute for Dynamics and Self-Organization, University of Oxford (Autor:in)
  • G. Ivan Guerrero-Garcia - , Universidad Autonoma de San Luis Potosi (Autor:in)
  • Michael Gruenwald - , University of Utah (Autor:in)
  • Amir Haji-Akbari - , Yale University (Autor:in)
  • Maria Ibáñez - , Institute of Science and Technology Austria (Autor:in)
  • Matthias Karg - , Heinrich Heine Universität Düsseldorf (Autor:in)
  • Tobias Kraus - , Leibniz-Institut für Neue Materialien, Universität des Saarlandes (Autor:in)
  • Byeongdu Lee - , Argonne National Laboratory (Autor:in)
  • Reid C. Van Lehn - , University of Wisconsin-Madison (Autor:in)
  • Robert J. Macfarlane - , Massachusetts Institute of Technology (MIT) (Autor:in)
  • Bortolo M. Mognetti - , Université libre de Bruxelles (ULB) (Autor:in)
  • Arash Nikoubashman - , Professur für Theorie biologisch inspirierter Polymere (g.B. IPF), Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Saeed Osat - , Max Planck Institute for Dynamics and Self-Organization (Autor:in)
  • Oleg V. Prezhdo - , University of Southern California (Autor:in)
  • Grant M. Rotskoff - , Stanford University (Autor:in)
  • Leonor Saiz - , University of California at Davis (Autor:in)
  • An Chang Shi - , McMaster University (Autor:in)
  • Sara Skrabalak - , Indiana University Bloomington (Autor:in)
  • Ivan I. Smalyukh - , University of Colorado Boulder, Hiroshima University (Autor:in)
  • Mario Tagliazucchi - , Universidad de Buenos Aires (Autor:in)
  • Dmitri V. Talapin - , The University of Chicago, Argonne National Laboratory (Autor:in)
  • Alexei V. Tkachenko - , Brookhaven National Laboratory (Autor:in)
  • Sergei Tretiak - , Los Alamos National Laboratory (Autor:in)
  • David Vaknin - , Iowa State University (Autor:in)
  • Asaph Widmer-Cooper - , University of Sydney (Autor:in)
  • Gerard C.L. Wong - , University of California at Los Angeles, California NanoSystems Institute (Autor:in)
  • Xingchen Ye - , Indiana University Bloomington (Autor:in)
  • Shan Zhou - , South Dakota School of Mines & Technology (Autor:in)
  • Eran Rabani - , University of California at Berkeley, Tel Aviv University (Autor:in)
  • Michael Engel - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Alex Travesset - , Iowa State University (Autor:in)

Abstract

We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.

Details

OriginalspracheEnglisch
Seiten (von - bis)14791-14840
Seitenumfang50
FachzeitschriftACS nano
Jahrgang18
Ausgabenummer23
PublikationsstatusVeröffentlicht - 11 Juni 2024
Peer-Review-StatusJa

Externe IDs

PubMed 38814908

Schlagworte

Schlagwörter

  • assembly protocols, colloidal crystal, material properties, nanocrystal, nanocrystal assembly, nanoparticle, quantum dots, self-assembly, structure prediction, superlattice