Multi-Precision Deep Neural Network Acceleration on FPGAs
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Quantization is a promising approach to reduce the computational load of neural networks. The minimum bit-width that preserves the original accuracy varies significantly across different neural networks and even across different layers of a single neural network. Most existing designs over-provision neural network accelerators with sufficient bit-width to preserve the required accuracy across a wide range of neural networks. In this paper, we present mpDNN, a multi-precision multiplier with dynamically adjustable bit-width for deep neural network acceleration. The design supports run-time splitting an arithmetic operator into multiple independent operators with smaller bit-width, effectively increasing throughput when lower precision is required. The proposed architecture is designed for FPGAs, in that the multipliers and bit-width adjustment mechanism are optimized for the LUT-based structure of FPGAs. Experimental results show that by enabling run-time precision adjustment, mpDNN can offer 3-15x improvement in throughput.
Details
Originalsprache | Englisch |
---|---|
Titel | 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC) |
Herausgeber (Verlag) | IEEE, New York [u. a.] |
Seiten | 454-459 |
Seitenumfang | 6 |
ISBN (elektronisch) | 9781665421355 |
Publikationsstatus | Veröffentlicht - 2022 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Asia and South Pacific Design Automation Conference (ASP-DAC) |
---|---|
Band | 2022-January |
Konferenz
Titel | 27th Asia and South Pacific Design Automation Conference, ASP-DAC 2022 |
---|---|
Dauer | 17 - 20 Januar 2022 |
Stadt | Virtual, Online |
Land | Taiwan |