Multi-Precision Deep Neural Network Acceleration on FPGAs

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Quantization is a promising approach to reduce the computational load of neural networks. The minimum bit-width that preserves the original accuracy varies significantly across different neural networks and even across different layers of a single neural network. Most existing designs over-provision neural network accelerators with sufficient bit-width to preserve the required accuracy across a wide range of neural networks. In this paper, we present mpDNN, a multi-precision multiplier with dynamically adjustable bit-width for deep neural network acceleration. The design supports run-time splitting an arithmetic operator into multiple independent operators with smaller bit-width, effectively increasing throughput when lower precision is required. The proposed architecture is designed for FPGAs, in that the multipliers and bit-width adjustment mechanism are optimized for the LUT-based structure of FPGAs. Experimental results show that by enabling run-time precision adjustment, mpDNN can offer 3-15x improvement in throughput.

Details

OriginalspracheEnglisch
Titel2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)
Herausgeber (Verlag)IEEE, New York [u. a.]
Seiten454-459
Seitenumfang6
ISBN (elektronisch)9781665421355
PublikationsstatusVeröffentlicht - 2022
Peer-Review-StatusJa

Publikationsreihe

ReiheAsia and South Pacific Design Automation Conference (ASP-DAC)
Band2022-January

Konferenz

Titel27th Asia and South Pacific Design Automation Conference, ASP-DAC 2022
Dauer17 - 20 Januar 2022
StadtVirtual, Online
LandTaiwan