Multi-Precision Deep Neural Network Acceleration on FPGAs
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Quantization is a promising approach to reduce the computational load of neural networks. The minimum bit-width that preserves the original accuracy varies significantly across different neural networks and even across different layers of a single neural network. Most existing designs over-provision neural network accelerators with sufficient bit-width to preserve the required accuracy across a wide range of neural networks. In this paper, we present mpDNN, a multi-precision multiplier with dynamically adjustable bit-width for deep neural network acceleration. The design supports run-time splitting an arithmetic operator into multiple independent operators with smaller bit-width, effectively increasing throughput when lower precision is required. The proposed architecture is designed for FPGAs, in that the multipliers and bit-width adjustment mechanism are optimized for the LUT-based structure of FPGAs. Experimental results show that by enabling run-time precision adjustment, mpDNN can offer 3-15x improvement in throughput.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC) |
| Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers (IEEE) |
| Seiten | 454-459 |
| Seitenumfang | 6 |
| ISBN (elektronisch) | 9781665421355 |
| Publikationsstatus | Veröffentlicht - 2022 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | Asia and South Pacific Design Automation Conference (ASP-DAC) |
|---|---|
| Band | 2022-January |
Konferenz
| Titel | 27th Asia and South Pacific Design Automation Conference |
|---|---|
| Kurztitel | ASP-DAC 2022 |
| Veranstaltungsnummer | 27 |
| Dauer | 17 - 20 Januar 2022 |
| Webseite | |
| Ort | Online |
| Stadt | Taipei |
| Land | Taiwan |