Multilevel Operation of Ferroelectric FET Memory Arrays Considering Current Percolation Paths Impacting Switching Behavior

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Franz Muller - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Sourav De - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Ricardo Olivo - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Maximilian Lederer - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Abdelrahman Altawil - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Raik Hoffmann - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Thomas Kampfe - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Tarek Ali - , Global Foundries Dresden (Autor:in)
  • Stefan Dunkel - , Global Foundries Dresden (Autor:in)
  • Halid Mulaosmanovic - , Global Foundries Dresden (Autor:in)
  • Johannes Muller - , Global Foundries Dresden (Autor:in)
  • Sven Beyer - , Global Foundries Dresden (Autor:in)
  • Konrad Seidel - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Gerald Gerlach - , Professur für Festkörperelektronik (Autor:in)

Abstract

This letter reports multi-level-cell (MLC) operation of ferroelectric FETs (FeFET) arranged in AND-connected memory arrays with a bit-error rate (BER) of 4% when writing a random data pattern. The FeFETs with HfO2 have been embedded in GlobalFoundries 28 nm bulk high-k metal gate (HKMG) technology and are based on a metal-ferroelectric-isolator-semiconductor (MFIS) stack. Due to the direct field influence of the ferroelectric layer onto the Si-channel current percolation paths (CPPs) dominate the state transition behavior. This results in device-to-device variation and contributes to the asymmetry in programming and erasing progression. For array operation, write schemes and state-preserving inhibit schemes are evaluated to cope with the influence of the CPPs. Finally, this enables us to take advantage of the MLC capabilities of FeFETs on the array level, further enhancing the storage density of the 1T memory cells. Robust retention is proven for the MLC states at 85°C as well as reliable rewritability of the memory array with changing input patterns.

Details

OriginalspracheEnglisch
Seiten (von - bis)757-760
Seitenumfang4
FachzeitschriftIEEE electron device letters
Jahrgang44
Ausgabenummer5
PublikationsstatusVeröffentlicht - 1 Mai 2023
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-7062-9598/work/174430561

Schlagworte

Schlagwörter

  • array, FeFET, Ferroelectric, hafnium oxide, memory, multilevel