Microstructure and mechanical properties of 316L/Inconel 625 gradient multi-material additively manufactured by laser powder bed fusion

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Hubert Pasiowiec - , AGH University of Science and Technology (Autor:in)
  • Piotr Ledwig - , AGH University of Science and Technology (Autor:in)
  • Laura Ząbek - , AGH University of Science and Technology (Autor:in)
  • Tomasz Kargul - , AGH University of Science and Technology (Autor:in)
  • Paulina Lisiecka-Graca - , AGH University of Science and Technology (Autor:in)
  • Marek Wojtaszek - , AGH University of Science and Technology (Autor:in)
  • Maik Gude - , Professur für Systemleichtbau und Mischbauweisen (Autor:in)
  • Rafał Stanik - , Institut für Leichtbau und Kunststofftechnik (ILK) (Autor:in)
  • Jan Falkus - , AGH University of Science and Technology (Autor:in)
  • Christian Leinenbach - , Swiss Federal Laboratories for Materials Science and Technology (Empa), École Polytechnique Fédérale de Lausanne (Autor:in)
  • Beata Dubiel - , AGH University of Science and Technology (Autor:in)

Abstract

Gradient multi-materials combining 316L steel and Inconel 625 superalloy are needed for components operating at variable temperature and load conditions. This study investigates for the first time the laser powder bed fusion manufacturing of 316L/Inconel 625 gradient multi-materials by step-like varying the composition. Tomographic and microscopy analysis revealed low porosity and few microcracks. Its presence does not affect mechanical properties. Mixing 316L with Inconel 625 favors the microstructure with small equiaxed grains and precipitates of the Laves phase and carbides along cell and grain boundaries. The phase analysis of precipitates by electron diffraction is in line with Thermo-Calc calculations and shows that higher Nb and Mo content promotes precipitation of M23C6 carbides instead of M6C. The increase in hardness across the gradient is mainly attributed to solid solution strengthening by Nb and Mo. The transverse arrangement of the gradient sample in tensile test results in higher strength than in a longitudinal orientation. This study shows that the designed process conditions and gradient scheme reduce the risk for abrupt element segregation, leading to brittleness, typical for directed energy deposition. The interplay between manufacturing, chemical composition, microstructure and mechanical properties of gradient multi-material is determined.

Details

OriginalspracheEnglisch
Aufsatznummer115162
Seitenumfang23
FachzeitschriftMaterials and Design
Jahrgang260
Frühes Online-Datum17 Nov. 2025
PublikationsstatusVeröffentlicht - Dez. 2025
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0003-1370-064X/work/198631111

Schlagworte

Schlagwörter

  • 316L steel, Additive manufacturing, Gradient multi-material design, Inconel 625, Mechanical properties, Microstructure