Medical slice transformer for improved diagnosis and explainability on 3D medical images with DINOv2

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Gustav Müller-Franzes - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Firas Khader - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Robert Siepmann - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Tianyu Han - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Jakob Nikolas Kather - , Else Kröner Fresenius Zentrum für Digitale Gesundheit, Medizinische Klinik und Poliklinik I, Nationales Zentrum für Tumorerkrankungen (NCT) Heidelberg (Autor:in)
  • Sven Nebelung - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Daniel Truhn - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)

Abstract

Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are essential clinical cross-sectional imaging techniques for diagnosing complex conditions. However, large 3D datasets with annotations for deep learning are scarce. While methods like DINOv2 are encouraging for 2D image analysis, these methods have not been applied to 3D medical images. Furthermore, deep learning models often lack explainability due to their “black-box” nature. This study aims to extend 2D self-supervised models, specifically DINOv2, to 3D medical imaging while evaluating their potential for explainable outcomes. We introduce the Medical Slice Transformer (MST) framework to adapt 2D self-supervised models for 3D medical image analysis. MST combines a Transformer architecture with a 2D feature extractor, i.e., DINOv2. We evaluate its diagnostic performance against a 3D convolutional neural network (3D ResNet) across three clinical datasets: breast MRI (651 patients), chest CT (722 patients), and knee MRI (1199 patients). Both methods were tested for diagnosing breast cancer, predicting lung nodule dignity, and detecting meniscus tears. Diagnostic performance was assessed by calculating the Area Under the Receiver Operating Characteristic Curve (AUC). Explainability was evaluated through a radiologist’s qualitative comparison of saliency maps based on slice and lesion correctness. P-values were calculated using Delong’s test. MST achieved higher AUC values compared to ResNet across all three datasets: breast (0.94 ± 0.01 vs. 0.91 ± 0.02, P = 0.02), chest (0.95 ± 0.01 vs. 0.92 ± 0.02, P = 0.13), and knee (0.85 ± 0.04 vs. 0.69 ± 0.05, P = 0.001). Saliency maps were consistently more precise and anatomically correct for MST than for ResNet. Self-supervised 2D models like DINOv2 can be effectively adapted for 3D medical imaging using MST, offering enhanced diagnostic accuracy and explainability compared to convolutional neural networks.

Details

OriginalspracheEnglisch
Aufsatznummer23979
FachzeitschriftScientific reports
Jahrgang15
Ausgabenummer1
PublikationsstatusVeröffentlicht - 4 Juli 2025
Peer-Review-StatusJa

Externe IDs

PubMed 40615608
ORCID /0000-0002-3730-5348/work/198594672

Schlagworte

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete