Marine biomaterials: Biomimetic and pharmacological potential of cultivated Aplysina aerophoba marine demosponge

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Björn Binnewerg - , Institut für Pharmakologie und Toxikologie, Technische Universität Dresden (Autor:in)
  • Mario Schubert - , Institut für Pharmakologie und Toxikologie, Technische Universität Dresden (Autor:in)
  • Alona Voronkina - , National Pirogov Memorial Medical University, Vinnytsya (Autor:in)
  • Liubov Muzychka - , NASU - Institute of Bioorganic Chemistry and Petrochemistry (Autor:in)
  • Marcin Wysokowski - , Poznań University of Technology, Technische Universität Bergakademie Freiberg (Autor:in)
  • Iaroslav Petrenko - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Mirko Djurović - , University of Montenegro (Autor:in)
  • Valentine Kovalchuk - , National Pirogov Memorial Medical University, Vinnytsya (Autor:in)
  • Mikhail Tsurkan - , Professur für Zell-Ersatz der Netzhaut in Säugetieren, Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Rajko Martinovic - , University of Montenegro (Autor:in)
  • Nicole Bechmann - , Institut für Klinische Chemie und Laboratoriumsmedizin, Technische Universität Dresden (Autor:in)
  • Andriy Fursov - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Viatcheslav N. Ivanenko - , Lomonosov Moscow State University (Autor:in)
  • Konstantin R. Tabachnick - , RAS - P.P. Shirshov Institute of Oceanology, International Institute of Biomineralogy GmbH (Autor:in)
  • Oleg B. Smolii - , NASU - Institute of Bioorganic Chemistry and Petrochemistry (Autor:in)
  • Yvonne Joseph - , Technische Universität Bergakademie Freiberg (Autor:in)
  • Marco Giovine - , University of Genoa (Autor:in)
  • Stefan R. Bornstein - , Medizinische Klinik und Poliklinik III, Technische Universität Dresden, Universitätsklinikum Carl Gustav Carus Dresden, King's College London (KCL) (Autor:in)
  • Allison L. Stelling - , Duke University (Autor:in)
  • Antje Tunger - , Hochschulmedizin (Medizinische Fakultät und Universitätsklinikum), Fakultät Biologie, Technische Universität Dresden (Autor:in)
  • Marc Schmitz - , Hochschulmedizin (Medizinische Fakultät und Universitätsklinikum), Institut für Immunologie, Technische Universität Dresden (Autor:in)
  • Olga S. Taniya - , Ural Federal University, RAS - Postovsky Institute of Organic Synthesis, Ural Branch (Autor:in)
  • Igor S. Kovalev - , Ural Federal University (Autor:in)
  • Grigory V. Zyryanov - , Ural Federal University, RAS - Postovsky Institute of Organic Synthesis, Ural Branch (Autor:in)
  • Kaomei Guan - , Institut für Pharmakologie und Toxikologie, Technische Universität Dresden (Autor:in)
  • Hermann Ehrlich - , Technische Universität Bergakademie Freiberg (Autor:in)

Abstract

Marine demosponges of the Verongiida order are considered a gold-mine for bioinspired materials science and marine pharmacology. The aim of this work was to simultaneously isolate selected bromotyrosines and unique chitinous structures from A. aerophoba and to propose these molecules and biomaterials for possible application as antibacterial and antitumor compounds and as ready-to-use scaffolds for cultivation of cardiomyocytes, respectively. Among the extracted bromotyrosines, the attention has been focused on aeroplysinin-1 that showed interesting unexpected growth inhibition properties for some Gram-negative clinical multi-resistant bacterial strains, such as A. baumannii and K. pneumoniae, and on aeroplysinin-1 and on isofistularin-3 for their anti-tumorigenic activity. For both compounds, the effects are cell line dependent, with significant growth inhibition activity on the neuroblastoma cell line SH-SY5Y by aeroplysinin-1 and on breast cancer cell line MCF-7 by isofistularin-3. In this study, we also compared the cultivation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) on the A. aerophoba chitinous scaffolds, in comparison to chitin structures that were pre-coated with Geltrex™, an extracellular matrix mimetic which is used to enhance iPSC-CM adhesion. The iPSC-CMs on uncoated and pure chitin structures started contracting 24 h after seeding, with comparable behaviour observed on Geltrex-coated cell culture plates, confirming the biocompatibility of the sponge biomaterial with this cell type. The advantage of A. aerophoba is that this source organism does not need to be collected in large quantities to supply the necessary amount for further pre-clinical studies before chemical synthesis of the active compounds will be available. A preliminary analysis of marine sponge bioeconomy as a perspective direction for application of biomaterials and secondary bioactive metabolites has been finally performed for the first time.

Details

OriginalspracheEnglisch
Aufsatznummer110566
FachzeitschriftMaterials Science and Engineering: C, Materials for biological applications
Jahrgang109
PublikationsstatusVeröffentlicht - Apr. 2020
Peer-Review-StatusJa

Externe IDs

PubMed 32228987
ORCID /0000-0002-8375-8233/work/142236378
ORCID /0000-0002-6932-333X/work/142239654

Schlagworte

Schlagwörter

  • Aeroplysinin-1, Cardiomyocytes, Cell culture, Chitin, Marine biomaterials, Tissue engineering