Magnetic vortex cores as tunable spin-wave emitters

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Sebastian Wintz - , Helmholtz-Zentrum Dresden-Rossendorf, Technische Universität Dresden (Autor:in)
  • Vasil Tiberkevich - , Oakland University (Autor:in)
  • Markus Weigand - , Max-Planck-Institut für Intelligente Systeme (Autor:in)
  • Jörg Raabe - , Paul Scherrer Institute (Autor:in)
  • Jürgen Lindner - , Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Artur Erbe - , Institut für Halbleiter- und Mikrosystemtechnik (IHM), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)
  • Andrei Slavin - , Oakland University (Autor:in)
  • Jürgen Fassbender - , Professur für Angewandte Festkörperphysik (gB/HZDR), Helmholtz-Zentrum Dresden-Rossendorf (Autor:in)

Abstract

The use of spin waves as information carriers in spintronic devices can substantially reduce energy losses by eliminating the ohmic heating associated with electron transport. Yet, the excitation of short-wavelength spin waves in nanoscale magnetic systems remains a significant challenge. Here, we propose a method for their coherent generation in a heterostructure composed of antiferromagnetically coupled magnetic layers. The driven dynamics of naturally formed nanosized stacked pairs of magnetic vortex cores is used to achieve this aim. The resulting spin-wave propagation is directly imaged by time-resolved scanning transmission X-ray microscopy. We show that the dipole-exchange spin waves excited in this system have a linear, non-reciprocal dispersion and that their wavelength can be tuned by changing the driving frequency.

Details

OriginalspracheEnglisch
Seiten (von - bis)948-953
Seitenumfang6
FachzeitschriftNature nanotechnology
Jahrgang11
Ausgabenummer11
PublikationsstatusVeröffentlicht - 1 Nov. 2016
Peer-Review-StatusJa