Machine Learning Approaches for Phase Identification Using Process Variables in Batch Processes

Publikation: Beitrag in FachzeitschriftÜbersichtsartikel (Review)BeigetragenBegutachtung

Beitragende

  • Marco Gärtler - , ABB Group (Autor:in)
  • Martin Hollender - , ABB Group (Autor:in)
  • Benjamin Klöpper - , ABB Group (Autor:in)
  • Sylvia Maczey - , ABB Group (Autor:in)
  • Ruomu Tan - , ABB Group (Autor:in)
  • Chen Song - , ABB Group (Autor:in)
  • Franz David Bähner - , Bayer AG (Autor:in)
  • Stefan Krämer - , Bayer AG (Autor:in)
  • Gregor Just - , Technische Universität Dresden (Autor:in)
  • Valentin Khaydarov - , Arbeitsgruppe Systemverfahrenstechnik (Autor:in)
  • Leon Urbas - , Professur für Prozessleittechnik (Autor:in)
  • Rebecca Gedda - , Capgemini (Autor:in)

Abstract

Specialty and fine chemicals are often manufactured in multipurpose batch production plants. Compared to continuous production, these plants offer increased flexibility at the cost of operational complexity. A recipe defines the sequence and process parameters of different batch phases that are needed to transform raw materials into the desired product. In some plants detailed information about the executed recipe is not always captured by data acquisition systems. Knowledge of these phases is essential for optimizing quality and throughput. State-of-the-art data-driven machine learning techniques can recognize recurrent patterns in noisy time series data, enabling automatic labeling of batch phases based on widely available sensor data. In this review paper, we provide an overview of several machine learning approaches that can be used in an industrial setting.

Details

OriginalspracheEnglisch
Seiten (von - bis)989-1002
Seitenumfang14
FachzeitschriftChemie-Ingenieur-Technik
Jahrgang95
Ausgabenummer7
PublikationsstatusVeröffentlicht - 26 Apr. 2023
Peer-Review-StatusJa

Externe IDs

Mendeley 25ad0e77-0a2f-3d94-b115-527603d11886
WOS 000976059700001
ORCID /0000-0001-5165-4459/work/142248277

Schlagworte

Forschungsprofillinien der TU Dresden

Schlagwörter

  • Active learning, Batch process, Data analytics, Phase identification, Time series