Low Frequency Asymptotics and Electro-Magneto-Statics for Time-Harmonic Maxwell's Equations in Exterior Weak Lipschitz Domains with Mixed Boundary Conditions

Publikation: Vorabdruck/Dokumentation/BerichtVorabdruck (Preprint)

Beitragende

  • Frank Osterbrink - (Autor:in)
  • Dirk Pauly - , Universität Duisburg-Essen (Autor:in)

Abstract

We prove that the time-harmonic solutions to Maxwell's equations in a 3D exterior domain converge to a certain static solution as the frequency tends to zero. We work in weighted Sobolev spaces and construct new compactly supported replacements for Dirichlet-Neumann fields. Moreover, we even show convergence in operator norm.

Details

OriginalspracheEnglisch
PublikationsstatusVeröffentlicht - 15 Nov. 2019
Extern publiziertJa
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.WorkingPaper

Externe IDs

ORCID /0000-0003-4155-7297/work/145224271

Schlagworte

Schlagwörter

  • math.AP, math-ph, math.FA, math.MP, 35Q60, 78A25, 78A30