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Low Frequency Asymptotics and Electro-Magneto-Statics for Time-Harmonic Maxwell’s

Equations in Exterior Weak Lipschitz Domains with Mixed Boundary Conditions

FRANK OSTERBRINK AND DIRK PAULY

Abstract. We prove that the time-harmonic solutions to Maxwell’s equations in a 3D exterior domain
converge to a certain static solution as the frequency tends to zero. We work in weighted Sobolev spaces
and construct new compactly supported replacements for Dirichlet-Neumann fields. Moreover, we even
show convergence in operator norm.
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1. Introduction

Applying a time-harmonic ansatz (or Fourier-transformation with respect to time) to the classical
time-dependent Maxwell equations in some domain Ω ⊂ R3, we are led to consider the time-harmonic
Maxwell system

rotE + iωB = G , − rotH + iωD = −F , in Ω(1.1)

with frequency ω ∈ C. Here, E and H denote the electric and magnetic field, D = εE and B = µH
represent the displacement current and magnetic induction, respectively, and F ,G are known source
terms. The matrix valued functions ε and µ describe the permittivity and permeability of the medium
filling Ω and are assumed to be time-independent. In the following we are specifically interested in
the case of an exterior weak Lipschitz domain Ω ⊂ R3 ( i.e., a connected open subset with compact
complement ) with boundary Γ := ∂Ω (Lipschitz submanifold ) decomposed into two relatively open
subsets Γ1 and Γ2 := Γ \ Γ1 being itself Lipschitz submanifolds of Γ. We impose mixed homogeneous
boundary conditions, which in classical terms can be written as

n× E = 0 on Γ1, n×H = 0 on Γ2, (n : outward unit normal ),(1.2)
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and, in order to separate outgoing from incoming waves, we require the so called Silver-Müller radiation
condition (with ξ(x) := x/r(x) and r(x) := |x| for x ∈ R3)

ξ ×H + E , ξ × E −H = o(r−1) for r −→∞ .(1.3)

First existence results concerning boundary value problems for the time-harmonic Maxwell system in
exterior domains have been given by Müller [16, 15] in domains with smooth boundaries and homogeneous,
isotropic media, i.e. ε = µ = 1. In [10] Leis used the limiting absorption principle to obtain existence and
uniqueness for media, which are possibly inhomogeneous and anisotropic within a bounded subset of Ω.
Nevertheless, Leis still needed strong assumptions on the boundary regularity. In the bounded domain
case, even for general inhomogeneous and anisotropic media ( cf. Leis [11] ), it is sufficient that Ω allows
for a certain selection theorem, later called Weck’s selection theorem or Maxwell compactness property,

which holds for a class of boundaries much larger than those accessible by the detour over H1 ( cf. Weck
[32], Weber [31], Picard [28], Costabel [2], Witsch [36], and Picard, Weck, and Witsch [30] ). The most
recent result for a solution theory in the exterior domain case is due to the second author [19, 23] ( see
also [18] ) and in its structure comparable to the results of [30]. While all these results handle the case of
full boundary conditions, in [17] the authors treated for the first time mixed boundary conditions. Using
the framework of polynomially weighted Sobolev spaces from [30], we have been able to show that the
time-harmonic boundary value problem (1.1), (1.2), and (1.3) admits unique solutions. In particular, by
means of Eidus limiting absorption principle [3] ( see also [4, 5] ) for the physically interesting case of
real frequencies ω a Fredholm alternative type result holds true. Similar to the bounded domain case,
the crucial tool for existence is again a compact embedding result, now being a local version of Weck’s
selection theorem.

In this paper we investigate the low frequency behaviour of the corresponding time-harmonic solution
operator. To this end we first have to provide a solution theory for the static boundary value problem,
i.e., ω = 0, which reads

rotE = G in Ω , rotH = F in Ω ,

div εE = f in Ω , div µH = g in Ω ,
(1.4)

n× E = 0 on Γ1 , n×H = 0 on Γ2 ,

n · εE = 0 on Γ2 , n · µH = 0 on Γ1 .

There are two major challenges:

• Problems in exterior domains require to work in weighted Sobolev spaces.
• The systems (1.4) have non trivial kernels, forcing us to work with orthogonality constraints on
solutions in weighted Sobolev spaces to achieve uniqueness. This specific difficulty is overcome by
a construction of special compactly supported fields and certain functionals, see Theorem 3.11.

In the case of full homogeneous boundary conditions and homogeneous, isotropic media Kress [8]
( using integral equation methods ) and Picard [26] ( using Hilbert space methods ) established solution
theories in the generalized setting of alternating differential forms on Riemannian manifolds of arbitrary
dimensions ( see also [29] for nonlinear materials ). For the classical threedimensional case of electro-
magneto-statics with full homogeneous boundary conditions, we refer to Picard [27] ( see also [14] ) as
well as the references therein. Following the Hilbert space approach, in Section 3 we will present Helmholtz
type decompositions in weighted Sobolev spaces which then together with Weck’s local selection theorem
will provide a powerful setting for solving system (1.4).

In Section 4 we shortly present the time-harmonic solution theory summarizing the results obtained
in [17]. This results follow by the same methods as in [19, 23] ( see also Picard, Weck, and Witsch [30],
Weck and Witsch [33, 34, 35] ). For nonreal frequencies the solution is obtained by standard Hilbert space
methods as ω belongs to the resolvent set of the Maxwell operator

M : RΓ1
(Ω)× RΓ2

(Ω) ⊂ L
2
Λ(Ω) −→ L

2
Λ(Ω) , (E,H) 7−→ iΛ−1M , L

2
Λ(Ω) := L

2
ε(Ω)× L

2
µ(Ω) ,

where

Λ :=

(
ε 0
0 µ

)
, M :=

(
0 − rot
rot 0

)
, L

2
γ(Ω) :=

(
L
2(Ω), 〈 γ · , · 〉

L2(Ω)

)
.
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The case of real frequencies ω 6= 0 is much more challenging, since here we want to solve in the continuous

spectrum of the Maxwell operator. Nevertheless, restricting to data (F,G) ∈ L
2
> 1

2

(Ω) × L
2
> 1

2

(Ω), we are

able to obtain radiating solutions (E,H) ∈ L
2
<− 1

2

(Ω)× L
2
<− 1

2

(Ω) by means of Eidus’ limiting absorption

principle [3, 4], i.e., as limit of solutions corresponding to frequencies ω ∈ C+ \ R. In other words,
the resolvent (M − ω)−1 and hence also LΛ,ω = i(M − ω )−1Λ−1 may be extended continuously to the
real axis ( cf. [12] ). An a-priori-estimate and the polynomial decay of eigenfunctions needed in the
limit process are obtained by transferring well known results for the Helmholtz equation in the whole
space using a suitable decomposition of the fields E and H and perturbation arguments. This will be
sufficient to show that a generalized Fredholm alternative holds, see Theorem 4.3. We have to admit
finite dimensional eigenspaces for certain eigenvalues ω 6= 0, which can not accumulate in R \ {0}. Next
by proving an estimate for the solutions of the homogeneous and isotropic whole space problem together
with an perturbation argument, we show that these possible eigenvalues do not accumulate even at ω = 0.

Therefore, for small ω 6= 0 the time-harmonic solution operator LΛ,ω is well defined on L
2
> 1

2

(Ω)× L
2
> 1

2

(Ω)

and a low frequency analysis is reasonable.
Finally, in Section 5 we investigate the low frequency behavior of time-harmonic solutions, in particular

the question under which conditions radiating solutions converge to a static solution of system (1.4). In
the case of a bounded domain the low frequency asymptotics is simply given by a Neumann series of the
static solution operator L0, which directly follows by applying L0 to the time-harmonic system (1.1).
More precisely, in the case that Ω is a bounded Lipschitz domain, by Weck’s selection theorem the range
R(M) of the Maxwell operator is closed and the reduced Maxwell operator

Mred : D(M) ∩R(M) ⊂ R(M) −→ R(M) , (E,H) 7−→ (−iε−1 rotH, iµ−1 rotE)

has a continuous inverse L0 : R(M) −→ D(M) ∩ R(M), which interpreted as operator into R(M) is

even compact. Moreover, arbitrary powers Lj0 of L0 are well defined. Hence, for small |ω| > 0 the time-

harmonic solution operator Lω : L2Λ(Ω) −→ D(M) is well defined ( Fredholm alternative ) and is given by
the Neumann series

Lω = −ω−1πN (M) +

∞∑

j=0

ωjLj+1
0 πR(M) .(1.5)

Here, πN (M) and πR(M) are the projections onto the kernel and the range of M, respectively.
In the exterior domain case this simple low frequency asymptotics does not hold. It is even not well

defined in an obvious way, since now the static solution operator L0 maps data from a polynomially
weighted Sobolev space to solutions belonging to a less weighted Sobolev space ( cf. Theorem 3.15 resp.
Theorem 3.16 ). However, using an estimate for the solutions of the homogeneous, isotropic whole space
problem together with a perturbation argument we can prove the convergence of the time-harmonic
solutions Lω(F,G) to a specific static solution L0(F,G) on a certain subspace, i.e.,

Lω −→ L0 .
A proper and corrected version of the low frequency asymptotics (1.5) for the case of an exterior

domain will be addressed in a forthcoming publication ( see [21, 22, 20, 19, 18] for the case of full
boundary conditions ).

2. Preliminaries

In the following, Ω ⊂ R3 is an exterior weak Lipschitz domain, see [1, Definition 2.3], with boundary
Γ := ∂Ω decomposed into two relatively open weak Lipschitz subdomains Γ1 and Γ2 := Γ \ Γ1, see [1,
Definition 2.5]. For x ∈ R3 with x 6= 0 let r(x) := |x | and ξ(x) := x/|x |

(
| · | : Euclidean norm in R3

)
.

Moreover, we fix r̂ > 0 such that R3 \ Ω ⋐ Ur̂ (compactly included) and define

Ωδ := Ω ∩ Uδ , Γi,δ := Γi ∪ Sδ , qUδ := R
3 \Uδ , Gr̂,δ := qU(r̂) ∩ U(δ), ( δ ≥ r̂ ) ,

where Uδ and Sδ denote the open ball resp. sphere of radius δ centered at the origin. We also pick some

η̃ ∈ C
∞(R) with 0 ≤ η̃ ≤ 1 , supp η̃ ⊂ (1,∞) , η̃|[2,∞) = 1 ,
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and define for δ ≥ r̂ functions ηδ ∈ C
∞(R3) by

ηδ(x) := η̃(r(x)/δ).

These functions satisfy supp ηδ ⊂ qUδ as well as ηδ = 1 on qU2δ and will later be used for particular cut-off

procedures. The usual Lebesgue and Sobolev spaces will be denoted by L
2(Ω), Hm(Ω) and

R(Ω) :=
{
E ∈ L

2(Ω) : rotE ∈ L
2(Ω)

}
, D(Ω) :=

{
E ∈ L

2(Ω) : divE ∈ L
2(Ω)

}
,(2.1)

where we prefer to write rot instead of curl. However, for our purposes this spaces are not rich enough,
as even for square-integrable right hand sides the system (1.1), (1.2) does not admit square-integrable
solutions ( cf. [26], [17] ). Hence we have to generalize the solution concept and work in polynomially
weighted Sobolev spaces. For ρ := (1 + r2)1/2, m ∈ N, and t ∈ R we introduce

L
2
t (Ω) :=

{
u ∈ L

2
loc(Ω) : ρtu ∈ L

2(Ω)
}
,

as well as

H
m
t (Ω) :=

{
u ∈ L

2
t (Ω) : ∂αu ∈ L

2
t (Ω) for all |α| ≤ m

}
,

H
m
t (Ω) :=

{
u ∈ L

2
t (Ω) : ∂αu ∈ L

2
t+|α|(Ω) for all |α| ≤ m

}
,

Rt(Ω) :=
{
E ∈ L

2
t (Ω) : rotE ∈ L

2
t (Ω)

}
, Rt(Ω) :=

{
E ∈ L

2
t (Ω) : rotE ∈ L

2
t+1(Ω)

}
,

Dt(Ω) :=
{
H ∈ L

2
t (Ω) : divH ∈ L

2
t (Ω)

}
, Dt(Ω) :=

{
H ∈ L

2
t (Ω) : divH ∈ L

2
t+1(Ω)

}
.

We do not distinguish between vector fields resp. functions and ( in accordance with (2.1) ) we skip the
weight if t = 0, i.e.,

H
1(Ω) = H

1
0(Ω) , R(Ω) = R0(Ω) , D(Ω) = D0(Ω) , . . . .

If Γ1 6= ∅, homogeneous scalar, tangential or normal traces are encoded in

H
1
Γ1
(Ω) := C

∞
Γ1
(Ω)

‖ · ‖
H1(Ω)

, RΓ1
(Ω) := C

∞
Γ1
(Ω)

‖ · ‖
R(Ω)

, DΓ1
(Ω) := C

∞
Γ1
(Ω)

‖ · ‖
D(Ω)

,

as well as

H
1
t,Γ1

(Ω) := C
∞
Γ1
(Ω)

‖ · ‖
H1
t
(Ω)

, Rt,Γ1
(Ω) := C

∞
Γ1
(Ω)

‖ · ‖
R
t
(Ω)

, Dt,Γ1
(Ω) := C

∞
Γ1
(Ω)

‖ · ‖
D
t
(Ω)

,

H
1
t,Γ1

(Ω) := C
∞
Γ1
(Ω)

‖ · ‖
H1
t
(Ω)

, Rt,Γ1
(Ω) := C

∞
Γ1
(Ω)

‖ · ‖
R
t
(Ω)

, Dt,Γ1
(Ω) := C

∞
Γ1
(Ω)

‖ · ‖
D
t
(Ω)

.

where the set of test fields ( resp. test functions ) is given by

C
∞
Γ1
(Ω) :=

{
ϕ|Ω : ϕ ∈ C

∞(R3), suppϕ compact in R
3, dist(suppϕ, Γ1) > 0

}
.

We emphasize that in the case of a bounded domain, weighted and unweighted spaces coincide. Moreover,
by [17, Lemma 2.2], see also [1, Theorem 4.5], it holds

H
1
t,Γ1

(Ω) =
{
u ∈ H

1
t (Ω) : 〈u , divΦ 〉

L2(Ω)
= −〈∇u ,Φ 〉

L2(Ω)
for all Φ ∈ C

∞
Γ2
(Ω)

}
,

Rt,Γ1
(Ω) =

{
E ∈ Rt(Ω) : 〈E , rotΦ 〉

L2(Ω)
= 〈 rotE ,Φ 〉

L2(Ω)
for all Φ ∈ C

∞
Γ2
(Ω)

}
,

Dt,Γ1
(Ω) =

{
H ∈ Dt(Ω) : 〈H ,∇φ 〉

L2(Ω)
= −〈divH ,φ 〉

L2(Ω)
for all φ ∈ C

∞
Γ2
(Ω)

}
,

(2.2)

and

H
1
t,Γ1

(Ω) =
{
u ∈ H

1
t (Ω) : 〈u , div Φ 〉

L2(Ω)
= −〈∇u ,Φ 〉

L2(Ω)
for all Φ ∈ C

∞
Γ2
(Ω)

}
,

Rt,Γ1
(Ω) =

{
E ∈ Rt(Ω) : 〈E , rotΦ 〉

L2(Ω)
= 〈 rotE ,Φ 〉

L2(Ω)
for all Φ ∈ C

∞
Γ2
(Ω)

}
,

Dt,Γ1
(Ω) =

{
H ∈ Dt(Ω) : 〈H ,∇φ 〉

L2(Ω)
= −〈divH ,φ 〉

L2(Ω)
for all φ ∈ C

∞
Γ2
(Ω)

}
.

(2.3)
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Equipped with their natural inner products, all these spaces are Hilbert spaces. Vanishing rotation resp.
divergence will be indicated by an index zero in the lower left corner, e.g.,

0Rt(Ω) :=
{
E ∈ Rt(Ω) : rotE = 0

}
, 0Dt(Ω) :=

{
E ∈ Dt(Ω) : divE = 0

}
,

0Rt,Γ1
(Ω) := 0Rt(Ω) ∩ Rt,Γ1

(Ω) , 0Dt,Γ1
(Ω) := 0Dt(Ω) ∩Dt,Γ1

(Ω) .

For simplification and to shorten notation we write

V<s :=
⋂

t<s

Vt and V>s :=
⋃

t>s

Vt ( s ∈ R ) ,

for Vt being any of the spaces above and skip the space reference, i.e.,

H
m
t = H

m
t (Ω) , Rt,Γ1

= Rt,Γ1
(Ω) , Dt = Dt(Ω) , H

m
t,Γ2

= H
m
t,Γ2

(Ω) , . . . ,

if Ω = R3.

Definition 2.1. Let κ ≥ 0. We call a transformation γ “κ-decaying”, if

• γ : Ω −→ R3×3 is an L
∞-matrix field,

• γ is symmetric, i.e.,

∀ E,H ∈ L
2(Ω) : 〈E , γH 〉

L2(Ω)
= 〈 γE ,H 〉

L2(Ω)
,

• γ is uniformly positive definite, i.e.,

∃ c > 0 ∀ E ∈ L
2(Ω) : 〈E , γE 〉

L2(Ω)
≥ c · ‖E ‖2

L2(Ω)
,

• γ is asymptotically a multiple of the identity, i.e.,

γ = γ0 · 1+ γ̂ with γ0 ∈ R+ and γ̂ = O
(
r−κ

)
as r −→∞ .

General Assumption 2.2. From now on and through this paper we assume the following:

• Ω ⊂ R3 is an exterior weak Lipschitz domain with boundary Γ, decomposed into two weak Lipschitz
parts Γ1 and Γ2 = Γ \ Γ1 with weak Lipschitz interface Γ1 ∩ Γ2 as introduced in the beginning of
this section.
• There exists κ ≥ 0 such that ε = ε0 · 1+ ε̂ and µ = µ0 · 1+ µ̂ are κ-decaying.

For most of our results we need the slightly stronger assumption on the perturbations ε̂ and µ̂. That
is, ε̂ resp. µ̂ have to be differentiable outside of an arbitrarily large ball with decaying derivative. More
precisely:

Definition 2.3. Let κ ≥ 0. We call a transformation γ “κ− C
1−decaying”, if

• γ = γ0 · 1+ γ̂ is κ-decaying,

• and for some r̃ > r̂ we have

γ̂ ∈ C
1(qUr̃) with ∂j γ̂ = O

(
r−1−κ

)
as r −→∞ , ( j = 1, 2, 3 ).

Note that a κ-decaying ( resp. κ− C
1− decaying ) transformation γ is pointwise invertible for sufficiently

large x. In this sense, γ−1 is κ-decaying ( resp. κ− C
1− decaying) as well. Moreover,

〈 · , · 〉
L2
γ(Ω)

:= 〈 γ · , · 〉
L2(Ω)

resp. 〈 · , · 〉
L2
t,γ (Ω)

:= 〈 γρt · , ρt · 〉
L2(Ω)

define inner products on L
2(Ω) resp. L2t (Ω) inducing norms equivalent to the standard ones. Thus

L
2
γ(Ω) :=

(
L
2(Ω), 〈 · , · 〉

L2
γ(Ω)

)
and L

2
t,γ(Ω) :=

(
L
2
t (Ω), 〈 · , · 〉L2

t,γ (Ω)

)

are Hilbert spaces and we use ⊕γ , ⊕t,γ resp. ⊥γ , ⊥t,γ to indicate orthogonal sum and orthogonal com-
plement in this spaces. If γ = 1 we put ⊕γ =: ⊕ as well as ⊥γ =:⊥. Finally we introduce for s ∈ R the
(weighted ) “Dirichlet-Neumann fields”

γHs,Γ1,Γ2(Ω) := 0Rs,Γ1
(Ω) ∩ γ−1

0Ds,Γ2
(Ω) , Hs,Γ1,Γ2(Ω) := 1

Hs,Γ1,Γ2(Ω) ,
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where as before we skip the weight if s = 0.

3. The Static Problem ω = 0

We start our considerations with the supposedly simpler case of electro-magneto-statics, which in fact
possesses its own difficulties. First, as Ω is an exterior domain we are forced to work in polynomially
weighted Sobolev spaces. Second, for ω = 0 the time-harmonic Maxwell system (1.1),(1.2), i.e.,

rotE = G in Ω , n× E = 0 on Γ1 ,

rotH = F in Ω , n×H = 0 on Γ2 ,

is no longer coupled and in order to determine E and H we have to add two more equationsi

div εE = f , div µH = g , in Ω ,

as well as additional boundary conditions

n · εE = 0 on Γ2 , n · µH = 0 on Γ1 .

The resulting boundary value problems of electro- resp. magneto-statics ( cf. (1.4) )

rotE = G , div εE = f , n× E = 0 on Γ1 , n · εE = 0 on Γ2 ,(3.1)

rotH = F , div µH = g , n×H = 0 on Γ2 , n · µH = 0 on Γ1 ,(3.2)

still have non-trivial but finite-dimensional kernels εHΓ1,Γ2(Ω) and µHΓ2,Γ1(Ω), respectively, demanding
for finitely many orthogonality constraints to achieve unique solutions. Due to the similarity between
(3.1) and (3.2) we concentrate on the electro-static problem (3.1), keeping in mind that interchanging Γ1

and Γ2 as well as ε and µ we also solve the magneto-static system.

Let Θ be a domain in R3. Considering the densely defined and closed linear operators

A1 := gradΓ1
: D(A1) := H

1
Γ1
(Θ) ⊂ L

2(Θ) −→ L
2
ε(Θ) , w 7−→ ∇w ,

A2 := rotΓ1 : D(A2) := RΓ1
(Θ) ⊂ L

2
ε(Θ) −→ L

2(Θ) , u 7−→ rotu ,

the Hilbert space adjoints are ( cf. [17, Lemma 2.2], [1, Theorem 4.5] )

A
∗

1 = grad
∗

Γ1
= − divΓ2 ε : D(A

∗

1) = ε−1
DΓ2

(Θ) ⊂ L
2
ε(Θ) −→ L

2(Θ) , u 7−→ − div εu ,

A
∗

2 = rot
∗

Γ1
= ε−1 rotΓ2 : D(A∗

2) = RΓ2
(Θ) ⊂ L

2(Θ) −→ L
2
ε(Θ) , u 7−→ ε−1 rotu .

These operators satisfy

R(A1) ⊂ N (A2) , R(A∗

2) ⊂ N (A
∗

1) ,(3.3)

and by the projection theorem the Helmholtz-type decompositions




L
2(Θ) = R(A1)⊕ε N (A

∗

1) L
2(Θ) = R(A∗

2)⊕ε N (A2) ,

= ∇H1
Γ1
(Θ)⊕ε ε

−1
0DΓ2

(Θ) , = ε−1rotRΓ2
(Θ)⊕ε 0RΓ1

(Θ) ,

0RΓ1
(Θ) = N (A2) ε−1

0DΓ2
(Θ) = N (A

∗

1)

= R(A1)⊕ε

(
N (A

∗

1) ∩ N (A2)
)

= R(A∗

2)⊕ε

(
N (A2) ∩ N (A

∗

1)
)

= ∇H1
Γ1
(Θ)⊕ε εHΓ1,Γ2(Θ) , = ε−1rotRΓ2

(Θ)⊕ε εHΓ1,Γ2(Θ)

(3.4)

hold true. As shown in [24], rewriting (3.1) into

A2E = G , A
∗

1E = f , E ∈ D(A2) ∩ D(A
∗

1)(3.5)

iFor ω 6= 0 these equations are implicitly given, as by differentiating (1.1) we immediately get

iω div εE = div(− rotH + iωεE) = − divF , iω div µH = div(rotE + iωµH) = divG in Ω .
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and using (3.4) together with standard functional analysis tools, we immediately obtain an L
2-solution

theory for electro-magneto-statics, provided Θ satisfies “Weck’s selection theorem”, a compactness result
comparable to Rellich’s selection theorem well suited for Maxwell’s equations.

Definition 3.1. A domain Θ ⊂ R
3 satisfies ”Weck’s selection theorem” (WST) ( or possesses the

”Maxwell compactness property” ) if the embedding

RΓ1
(Θ) ∩ ε−1

DΓ2
(Θ) −֒−→ L

2(Θ) is compact .(3.6)

In particular, as shown in [1] (see also [24, Section 5]), it holds:

Lemma 3.2. Let Θ ⊂ R3 be a bounded weak Lipschitz domain with boundary Γ and weak Lipschitz
interfaces Γ1 and Γ2 := Γ \ Γ1. Then Weck’s selection theorem holds true and implies the following:

(i) (Maxwell estimate ) There is c > 0 such that for all E ∈ RΓ1
(Θ) ∩ ε−1

DΓ2
(Θ) ∩ εHΓ1,Γ2(Θ)⊥ε

‖E ‖
L2(Θ)

≤ c
(
‖ rotE ‖

L2(Θ)
+ ‖div εE ‖

L2(Θ)

)
.

(ii) ( Finite dimensional kernel ) The unit ball in εHΓ1,Γ2(Θ) is compact, i.e.,

dim εHΓ1,Γ2(Θ) <∞ .

(iii) ( Closed ranges ) The ranges of gradΓ1
and rotΓ1 resp. divΓ2 ε and ε−1 rotΓ2 are closed, i.e.,

∇H1
Γ1
(Θ) = ∇H1

Γ1
(Θ) , rotRΓ1

(Θ) = rotRΓ1
(Θ) ,

divDΓ2
(Θ) = divDΓ2

(Θ) , rotRΓ2
(Θ) = rotRΓ2

(Θ) ,

and the following Helmholtz type decompositions are valid

L
2(Θ) = ∇H1

Γ1
(Θ)⊕ε ε

−1
0DΓ2

(Θ) , L
2(Θ) = ε−1 rotRΓ2

(Θ)⊕ε 0RΓ1
(Θ) ,

0RΓ1
(Θ) = ∇H1

Γ1
(Θ)⊕ε εHΓ1,Γ2(Θ) , ε−1

0DΓ2
(Θ) = ε−1 rotRΓ2

(Θ)⊕ε εHΓ1,Γ2(Θ) .

Remark 3.3. In the latter lemma and the previous arguments ( involving Θ ) it is sufficient that ε is
κ−decaying with κ ≥ 0.

While Weck’s selection theorem holds true for bounded weak Lipschitz domains, it fails for unbounded
such as exterior domains ( cf. [1], [7] and also [6] for strong Lipschitz domains). Thus, we cannot retreat
on the functional analysis toolbox from [24], especially Lemma 3.2, to solve system (3.1). Instead we will

use a slightly weaker version of (3.6) to prove similar results in weighted L
2− spaces. More precisely, as

Ωδ is a bounded weak Lipschitz domain with boundary Γ = Γδ ∪ Γ2, Lemma 3.2 yields, e.g.,

∀ δ ≥ r̂ : RΓδ
(Ωδ) ∩ ε−1

DΓ2
(Ωδ) −֒−→ L

2(Ωδ) is compact .

Hence by [17, Lemma 3.3] it holds:

Theorem 3.4 (Weck’s local selection theorem). The embedding

RΓ1
(Ω) ∩ ε−1

DΓ2
(Ω) −֒−→ L

2
loc(Ω)

is compact. Equivalently for all s, t ∈ R with t < s the embedding

Rs,Γ1
(Ω) ∩ ε−1

Ds,Γ2
(Ω) −֒−→ L

2
t (Ω)

is compact.

As we will show in the following, by Theorem 3.4 we are indeed able to reconstruct the results of Lemma
3.2 in the framework of weighted Sobolev spaces, leading to a solution theory for (3.1) resp. (3.2) in
exterior domains.
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3.1. Poincaré and Maxwell Estimates in Exterior Domains. We start out proving a weighted
version of the Poincaré estimate. From [25, Lemma 15], see also [12, Poincare’s estimate III], we have

‖φ ‖
L2
−1(Ω)

≤ ‖ r−1φ ‖
L2(Ω)

≤ 2 ‖∇φ ‖
L2(Ω)

∀ φ ∈ C
∞
Γ (Ω) ,(3.7)

which by continuity extends to all u ∈ H
1
−1,Γ(Ω) and can even be generalized to functions in H

1
−1(Ω).

Lemma 3.5. The following Poincaré estimate holds:

∃ c > 0 ∀ u ∈ H
1
−1(Ω) : ‖u ‖

L2
−1(Ω)

≤ c ‖∇u ‖
L2(Ω)

Proof. For u ∈ H
1
−1(Ω) it holds ηr̂u ∈ H

1
−1,Γ(Ω) and from (3.7) we obtain

‖u ‖
L2
−1(Ω)

≤ 2 ‖∇(ηr̂u) ‖L2
−1(Ω)

+ ‖ (1 − ηr̂)u ‖L2
−1(Ω)

≤ c
(
‖∇u ‖

L2(Ω)
+ ‖u ‖

L2(Ω2r̂)

)
,(3.8)

with c > 0. Assuming the asserted estimate is wrong, there exists a sequence (un)n∈N ⊂ H
1
−1(Ω) with

‖un ‖L2
−1(Ω)

= 1 and ‖∇un ‖L2(Ω)
<

1

n

n→∞−−−−→ 0 .

Hence, (un)n∈N is bounded in H
1(Ω2r̂) and by Rellich’s selection theoremii we can extract a subsequence

(uπ(n))n∈N converging in L
2(Ω2r̂). By (3.8) the sequence (uπ(n))n∈N is even a Cauchy sequence in H

1
−1(Ω)

and therefore converging to some u ∈ H
1
−1(Ω) with ∇u = 0. Consequently u is constant in Ω and as

u ∈ L
2
−1(Ω) we have u = 0, a contradiction. �

Similarly, Weck’s local selection theorem yields a weighted version of the Maxwell estimate. Again we

start with testfields Φ ∈ C
∞
Γ (Ω) stating that by (3.7) and −∆Φ = rot rotΦ−∇ div Φ we have

‖Φ ‖
L2
−1(Ω)

≤ c ‖∇Φ ‖
L2(Ω)

≤ c
(
‖ rotΦ ‖

L2(Ω)
+ ‖div Φ ‖

L2(Ω)

)
∀ Φ ∈ C

∞
Γ (Ω) .(3.9)

which directly extends to Φ ∈ H
1
−1,Γ(Ω) and can also be generalized.

Lemma 3.6. Let s ∈ R, r̃ > r̂, and Ξ ⊂ qUr̃ ⊂ R3 be an exterior domain with dist(Ξ, Sr̃) > 0.

Furthermore, let ε be κ−C
1−decaying with κ > 0 such that ε ∈ C

1(qUr̃). Then the conditions E ∈ L
2
s(

qUr̃),

rotE ∈ L
2
s+1(qUr̃), and div εE ∈ L

2
s+1(qUr̃) imply E ∈ H

1
s(Ξ) and it holds

‖E ‖
H1

s(Ξ)
≤ c

(
‖E ‖

L2s(
qUr̃)

+ ‖ rotE ‖
L2
s+1(

qUr̃)
+ ‖div εE ‖

L2
s+1(

qUr̃)

)

with c > 0 independent of E.

Proof. This regularity result is a direct consequence of [9, Lemma 4.2] . A detailed proof can be found in
[18, Korollar 3.7]. �

Remark 3.7. By obvious modifications on ε and the assumptions imposed on E, the previous result can

also be formulated for the bold Hilbert spaces, e.g., H
1
s(Ξ). Beyond that it may even be generalized to

higher regularity for E, e.g., E ∈ H
m
s (Ξ). We also note that the assumptions on ε may be reduced to a

κ−decaying ε = ε0 · 1+ ε̂ with κ > 0 and ε̂ ∈ C
1(qUr̃) such that ∂j ε̂ = O

(
r−1

)
.

Lemma 3.8. Let ε be κ− C
1−decaying with order κ > 0. Then there exist c, δ > 0 such that

‖E ‖
L2
−1(Ω)

≤ c
(
‖ rotE ‖

L2(Ω)
+ ‖div εE ‖

L2(Ω)
+ ‖E ‖

L2(Ωδ)

)

holds for all E ∈ R−1(Ω) ∩ ε−1
D−1(Ω).

iiNote that also Rellich’s selection theorem holds in bounded weak Lipschitz domains ( cf. [1, Theorem 4.8] ).
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Proof. By assumption ε is of the form ε = ε0 · 1+ ε̂ with ε0 ∈ R+ and there exists r̃ > r̂ such that

ε̂ ∈ C
1(qUr̃) with ε̂ = O

(
r−κ

)
, ∂j ε̂ = O

(
r−1−κ

)
as r −→∞ , ( j = 1, 2, 3 ) .(3.10)

Using the cut-off function from above, we define Ẽ := ηr̃E and as Lemma 3.6 yields E ∈ H
1
−1(supp ηr̃),

we have Ẽ ∈ H
1
−1,Γ(Ω). Hence by (3.9)

‖ Ẽ ‖
L2
−1(Ω)

≤ c
(
‖ rot Ẽ ‖

L2(qUr̃)
+ ‖ div ε0Ẽ ‖L2(supp ηr̃)

)

≤ c
(
‖ rot Ẽ ‖

L2(qUr̃)
+ ‖ div εẼ ‖

L2(supp ηr̃)
+ ‖ div ε̂Ẽ ‖

L2(supp ηr̃)

)

≤ c
(
‖ rot Ẽ ‖

L2(qUr̃)
+ ‖ div εẼ ‖

L2(qUr̃)
+

∑

j=1,2,3

‖(∂j ε̂)Ẽ ‖L2(supp ηr̃)
+ ‖ ε̂ : ∇Ẽ ‖

L2(supp ηr̃)

)
.

With (3.10) and the regularity estimate from Lemma 3.6 we obtain

‖ Ẽ ‖
L2
−1(Ω)

≤ c
(
‖ rot Ẽ ‖

L2(qUr̃)
+ ‖ div εẼ ‖

L2(qUr̃)
+ ‖ Ẽ ‖

H1
−1−κ(supp ηr̃)

)

≤ c
(
‖ rot Ẽ ‖

L2(qUr̃)
+ ‖ div εẼ ‖

L2(qUr̃)
+ ‖ Ẽ ‖

L2
−1−κ(

qUr̃)

)

≤ c
(
‖ rot Ẽ ‖

L2(Ω)
+ ‖ div εẼ ‖

L2(Ω)
+ ‖ Ẽ ‖

L2
−1−κ(Ω)

)
,

such that by

rot Ẽ = ηr̃ rotE + (∇ηr̃)× E , div εẼ = ηr̃ div εE + (∇ηr̃) · εE ,

we end up with

‖E ‖
L2
−1(Ω)

≤ c
(
‖ Ẽ ‖

L2
−1(Ω)

+ ‖E ‖
L2(Ω2r̃)

)

≤ c
(
‖ rot Ẽ ‖

L2(Ω)
+ ‖ div εẼ ‖

L2(Ω)
+ ‖ Ẽ ‖

L2
−1−κ(Ω)

+ ‖E ‖
L2(Ω2r̃)

)

≤ c
(
‖ rotE ‖

L2(Ω)
+ ‖ div εE ‖

L2(Ω)
+ ‖E ‖

L2
−1−κ(Ω)

)
.

Finally, as κ > 0, the assertion follows by

‖E ‖2
L2
−1−κ(Ω)

= ‖E ‖2
L2
−1−κ(Ωδ)

+ ‖E ‖2
L2
−1−κ(

qUδ)
≤ ‖E ‖2

L2(Ωδ)
+ (1 + δ2)−κ · ‖E ‖2

L2
−1(Ω)

choosing δ > r̂ big enough. �

Now, analogously to the proof of Lemma 3.5, we use Theorem 3.4 to eliminate the extra term on
the right hand side. But unlike there, here the kernels of the involved operators “rot” and “div ε” are
not necessarily trivial. Therefore, we aim for a weighted version of the Maxwell estimate excluding the
Dirichlet-Neumann fields

εH−1,Γ1,Γ2(Ω) = 0R−1,Γ1
(Ω) ∩ ε−1

0D−1,Γ2
(Ω) .

Fortunately, the space εH−1,Γ1,Γ2(Ω) is only finite dimensional.

Lemma 3.9. Let ε be κ− C
1− decaying with κ > 0. Then:

(i) (Maxwell estimate ) There is c > 0 s. t. for all E ∈ R−1,Γ1
(Ω)∩ ε−1

D−1,Γ2
(Ω)∩ εH−1,Γ1,Γ2(Ω)

⊥
−1,ε

‖E ‖
L2
−1(Ω)

≤ c ·
(
‖ rotE ‖

L2(Ω)
+ ‖ div εE ‖

L2(Ω)

)
.

(ii) ( Finite dimensional kernel ) The unit ball in εH−1,Γ1,Γ2(Ω) is compact, i.e.,

dim εH−1,Γ1,Γ2(Ω) <∞ .
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(iii) ( Closed ranges ) The ranges of gradΓ1
, rotΓ1 and divΓ2 ε are not closed, but it holds

(a) ∇H1
Γ1
(Ω) = ∇H1

−1,Γ1
(Ω) = ∇H1

−1,Γ1
(Ω) ,

(b) rotRΓ1
(Ω) = rotR−1,Γ1

(Ω)

= rotR−1,Γ1
(Ω) = rot

(
R−1,Γ1

(Ω) ∩ ε−1
0D−1,Γ2

(Ω) ∩ εH−1,Γ1,Γ2(Ω)
⊥

−1,ε

)
,

(c) divDΓ2
(Ω) = divD−1,Γ2

(Ω)

= divD−1,Γ2
(Ω) = div

(
D−1,Γ2

(Ω) ∩ ε 0R−1,Γ1
(Ω) ∩ ε εH−1,Γ1,Γ2(Ω)

⊥
−1,ε

)
.

Proof. Statement (ii) just follows by Weck’s local selection theorem and Lemma 3.8. For (i) suppose the

estimate is wrong, i.e., there exists (En)n∈N ⊂ R−1,Γ1
(Ω) ∩ ε−1

D−1,Γ2
(Ω) ∩ εH−1,Γ1,Γ2(Ω)

⊥
−1,ε with

‖En ‖L2
−1(Ω)

= 1 and ‖ rotEn ‖L2(Ω)
+ ‖ div εEn ‖L2(Ω)

n→∞−−−−→ 0 .(3.11)

Then the sequence (En)n∈N is bounded in R−1,Γ1
(Ω) ∩ ε−1

D−1,Γ2
(Ω) and Weck’s local selection theorem

provides a subsequence (Eπ(n))n∈N converging in L
2
loc(Ω). By Lemma 3.8 the sequence (Eπ(n))n∈N is an

L
2
−1−Cauchy-sequence and we obtain

E := lim
n→∞

Eπ(n) ∈ R−1,Γ1
(Ω) ∩ ε−1

D−1,Γ2
(Ω) with rotE = 0 resp. div εE = 0 .

Additionally, (Eπ(n))n∈N ⊂ (En)n∈N ⊂ εH−1,Γ1,Γ2(Ω)
⊥

−1,ε such that

∀ H ∈ εH−1,Γ1,Γ2(Ω) : 〈E ,H 〉
L2
−1,ε(Ω)

= lim
n→∞

〈Eπ(n) , H 〉L2
−1,ε(Ω)

= 0 .

hence

E ∈ εH−1,Γ1,Γ2(Ω) ∩ εH−1,Γ1,Γ2(Ω)
⊥

−1,ε = {0} ,
a contradiction. Let us finally turn to statement (iii). By definition we clearly have

∇H1
Γ1
(Ω) = ∇H1

−1,Γ1
(Ω) , rotRΓ1

(Ω) = rotR−1,Γ1
(Ω) , divDΓ2

(Ω) = divD−1,Γ2
(Ω) .(3.12)

Now, for u∇ ∈ ∇H1
−1,Γ1

(Ω) there exists (un)n∈N ⊂ H
1
−1,Γ1

(Ω) with ∇un
n→∞−−−−→ u∇ in L

2(Ω). The Poincaré

estimate, Lemma 3.5, shows that (un)n∈N is converging in L
2
−1(Ω) to some u ∈ L

2
−1(Ω) and we have

〈u , div Φ 〉
L2(Ω)

= lim
n→∞

〈un , div Φ 〉L2(Ω)
= − lim

n→∞
〈∇un ,Φ 〉L2(Ω)

= −〈u∇,Φ 〉
L2(Ω)

∀ Φ ∈ C
∞
Γ2
(Ω) .

Thus, by (2.3) we have u ∈ H
1
−1,Γ1

(Ω) and ∇u = u∇, which shows (a). For (b) let Erot ∈ rotR−1,Γ1
(Ω)

and (En)n∈N ⊂ RΓ1
(Ω) a sequence with rotEn

n→∞−−−−→ Erot in L
2(Ω). Using the decompositions from (3.4)

and statement (a), we obtain En = E∇
n + Ên ∈ ∇H1

−1,Γ1
(Ω)⊕ε ε

−1
0DΓ2

(Ω), hence

Ên = En − E∇
n ∈ RΓ1

(Ω) ∩ ε−1
0DΓ2

(Ω) with rot Ên = rotEn
L2(Ω)−−−−→ Erot .

As Ên ⊂ L
2(Ω) ⊂ L

2
−1(Ω) and εH−1,Γ1,Γ2(Ω) ⊂ L

2
−1(Ω) is finite-dimensional, we continue splitting

Ên = EH

n + Ẽn∈ εH−1,Γ1,Γ2(Ω)⊕−1,ε εH−1,Γ1,Γ2(Ω)
⊥

−1,ε ,

and end up with

Ẽn = Ên − EH

n ∈ R−1,Γ1
(Ω) ∩ ε−1

0D−1,Γ2
(Ω) ∩ εH−1,Γ1,Γ2(Ω)

⊥
−1,ε , rot Ẽn = rot Ên

L2(Ω)−−−−→ Erot .

Now the weighted Maxwell estimate from (i) shows that (Ẽn)n∈N is a Cauchy sequence in L
2
−1(Ω), hence

converging to some Ẽ ∈ L
2
−1(Ω). In addition we have

• ∀ Φ ∈ C
∞
Γ2
(Ω): 〈 Ẽ , rotΦ 〉

L2(Ω)

n→∞←−−−− 〈 Ẽn , rotΦ 〉
L2(Ω)

= 〈 rot Ẽn ,Φ 〉
L2(Ω)

n→∞−−−−→ 〈Erot ,Φ 〉
L2(Ω)

,
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• ∀ φ ∈ C
∞
Γ1
(Ω): 〈 εẼ ,∇φ 〉

L2(Ω)

n→∞←−−−− 〈 εẼn ,∇φ 〉L2(Ω)
= −〈div εẼn , φ 〉L2(Ω)

= 0 ,

• ∀ H ∈ εH−1,Γ1,Γ2(Ω): 〈 Ẽ ,H 〉
L2
−1,ε(Ω)

n→∞←−−−− 〈 Ẽn , H 〉L2
−1,ε(Ω)

= 0 ,

such that by (2.3)

Ẽ ∈ R−1,Γ1
(Ω) ∩ ε−1

0D−1,Γ2
(Ω) ∩ εH−1,Γ1,Γ2(Ω)

⊥
−1,ε with rot Ẽ = Erot

and (b) is proven. The last assertion (c) follows by similar arguments. �

Remark 3.10. Under the assumptions of Lemma 3.9 we have in particular

L
2(Ω) = R(divΓ2 ε)⊕ε N (gradΓ1

) = divD−1,Γ2
(Ω)⊕ε {0} = divD−1,Γ2

(Ω)

and by (3.4) the following Helmholtz type decompositions hold true:

L
2(Ω) = ∇H1

−1,Γ1
(Ω)⊕ε ε

−1
0DΓ2

(Ω) , L
2(Ω) = ε−1 rotR−1,Γ1

(Ω)⊕ε 0RΓ2
(Ω) ,

0RΓ1
(Ω) = ∇H1

−1,Γ1
(Ω)⊕ε εHΓ1,Γ2(Ω) , ε−1

0DΓ1
(Ω) = ε−1 rotR−1,Γ1

(Ω)⊕ε εHΓ2,Γ1(Ω) .

3.2. Dirichlet-Neumann Fields in Exterior Domains. As noted before, to solve (3.1) resp. (3.2)
with Hilbert space methods we have to deal with εH−1,Γ1,Γ2(Ω) resp. µH−1,Γ2,Γ1(Ω). Therefore, a more
thorough investigation of these fields is needed.

From the literature, it is well known, that the existence of Dirichlet-Neumann fields is strongly related
to the topological properties of the domain Ω. For example, as shown in [27] ( see also [14] ) in the limit
cases Γ1 = Γ resp. Γ1 = ∅ the dimension of HΓ1,Γ2(Ω) = 1

HΓ1,Γ2(Ω) is essentially given by the number
of connected components of the boundary Γ resp. the number of handles of Ω. In addition, as in [20,

Lemma 3.8] we obtain for γ κ− C
1−decaying with κ > 0

γH− 3
2 ,Γ1,Γ2

(Ω) = γHΓ1,Γ2(Ω) = γH< 1
2 ,Γ1,Γ2

(Ω) ,(3.13)

and an easy application of the Helmholtz decompositions (3.4) shows that the dimension of the Dirichlet-
Neumann fields γHΓ1,Γ2(Ω) does not depend on the transformation γ, i. e.,

d1,2 := dimHΓ1,Γ2(Ω) = dim γHΓ1,Γ2(Ω) = dim γH−1,Γ1,Γ2(Ω) <∞ .(3.14)

As a crucial technical trick we will show that there exists a finite set of compactly supported vector
fields B1(Ω), whose projections form a basis of γHΓ1,Γ2(Ω). The underlying idea is, that Ωr̂ and Ω have
essentially the same topological properties. Hence, choosing a basis of γHΓ1,r̂ ,Γ2(Ωr̂), extending their
elements by zero to Ω and projecting them onto γHΓ1,Γ2(Ω), we obtain a basis of γHΓ1,Γ2(Ω). Moreover,
the extensions by zero define exactly the set B1(Ω), which will also serve as a set of linear functionals
ensuring uniqueness of static solutions.

Theorem 3.11. There exist a finite set

B1(Ω) = {B1,1,B1,2, . . . ,B1,d1,2} ⊂ 0RΓ1
(Ω) with γHΓ1,Γ2(Ω) ∩B1(Ω)

⊥γ = {0} .

In addition, the elements of B1(Ω) have compact support and their projections ( in L
2
γ(Ω) ) along ∇H1

Γ1
(Ω)

form a basis of the Dirichlet-Neumann fields γHΓ1,Γ2(Ω).

Proof. The proof is given in the Appendix. �

Note that, as B1(Ω) contains only compactly supported functions, we obviously have

∀ s ∈ R : rotRs−1,Γ2
(Ω)

‖ · ‖
L2s(Ω) ∪ rotRs,Γ2

(Ω)
‖ · ‖

L2s(Ω) ⊂ B1(Ω)
⊥ .(3.15)

Therefore, B1(Ω) allows for an alternative characterization for R(rotΓ2) and, in particular, we may
generalize the weighted Maxwell estimate from Lemma 3.9.

Lemma 3.12. Let ε be κ−C
1−decaying with order κ > 0 and B1(Ω) be the finite set from Theorem 3.11.
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Ωr̂

R3 \ Ω

Sr̂

Ω

Γ1

Γ1
Γ1

Γ2

Γ2

Figure 1. R3 \ Ω surrounded by the boundary parts Γ1 ( thick black
lines ) and Γ2 ( thin black lines ) as well as the artificial boundary sphere
Sr̂ ( dashed line ).

(i) It holds

ε−1
0DΓ2

(Ω) ∩B1(Ω)
⊥ε = ε−1

0DΓ2
(Ω) ∩ εHΓ1,Γ2(Ω)

⊥ε = ε−1rotRΓ2
(Ω) .

(ii) There exists c > 0 such that for all E ∈ R−1,Γ1
(Ω) ∩ ε−1

D−1,Γ2
(Ω) it holds

‖E ‖
L2
−1(Ω)

≤ c
(
‖ rotE ‖

L2(Ω)
+ ‖div εE ‖

L2(Ω)
+

∑

ℓ=1,...,d1,2

|〈E ,B1,ℓ 〉L2
ε(Ω)
|
)
.

Proof. By (3.3), (3.4) and (3.15) we clearly have

ε−1
0DΓ2

(Ω) ∩ εHΓ1,Γ2(Ω)
⊥ε = ε−1rotRΓ2

(Ω) ⊂ ε−1
0DΓ2

(Ω) ∩B1(Ω)
⊥ε .

Now let E ∈ ε−1
0DΓ2

(Ω) ∩B1(Ω)
⊥ε . Then, by (3.4), we decompose

E = E +H ∈ ε−1rotRΓ2
(Ω)⊕ε εHΓ1,Γ2(Ω) ,

hence, by (3.15) and Theorem 3.11 we have H = E − E ∈ εHΓ1,Γ2(Ω) ∩B1(Ω)
⊥ε = {0}, which proves

statement (i). In order to show (ii) we assume the estimate to be wrong. Then there exists

(En)n∈N ⊂ R−1,Γ1
(Ω) ∩ ε−1

D−1,Γ2
(Ω) with ‖En ‖L2

−1(Ω)
= 1

and

rotEn
L2(Ω)−−−−→ 0 , div εEn

L2(Ω)−−−−→ 0 , 〈En ,B1,ℓ 〉L2
ε(Ω)

C−−−−→ 0 ( ℓ = 1, . . . , d1,2 )

for n −→ ∞. Thus (En)n∈N is bounded in R−1,Γ1
(Ω) ∩ ε−1

D−1,Γ2
(Ω) and by Weck’s local selection

theorem it has a subsequence (Eπ(n))n∈N converging in L
2
loc(Ω). By Lemma 3.8, this sequence even
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converges in R−1,Γ1
(Ω) ∩ ε−1

D−1,Γ2
(Ω) to some

E ∈ R−1,Γ1
(Ω) ∩ ε−1

D−1,Γ2
(Ω) with rotE = 0 resp. div εE = 0 .

We obtain E ∈ εH−1,Γ1,Γ2(Ω)
(3.13)
= εHΓ1,Γ2(Ω) and additionally

〈E ,B1,ℓ 〉L2
ε(Ω)

= lim
n→∞

〈Eπ(n) ,B1,ℓ 〉L2
ε(Ω)

= 0 , ℓ = 1, . . . , d1,2 ,

hence E ∈ εHΓ1,Γ2(Ω) ∩B1(Ω)
⊥ε = {0} by Theorem 3.11, a contradiction. �

Remark 3.13. Note that in Theorem 3.11 and Lemma 3.12 (i) no assumption on γ resp. ε is required,
except of the General Assumption 2.2.

3.3. Static Solution Theory. Let us turn back to the boundary value problem of electro-magneto-
statics, using (3.1) as an illustrative example. As indicated by Lemma 3.9 we will solve (3.1) for given

data (G, f) ∈ L
2(Ω) × L

2(Ω) by constructing a solution E ∈ L
2
−1(Ω). In order to obtain uniqueness, we

have to impose some additional conditions, but instead of projecting to Dirichlet-Neumann fields, we use
projections to B1(Ω).

Definition 3.14. Let (G, f, ζ) ∈ L
2
loc(Ω)× L

2
loc(Ω)× Cd1,2 . We call E “(static) solution” of (3.1), if

E ∈ R−1,Γ1
(Ω) ∩ ε−1

D−1,Γ2
(Ω)

satisfies

rotE = G , div εE = f , 〈E ,B1,ℓ 〉L2
ε(Ω)

= ζℓ ( ℓ = 1, . . . , d1,2 ) ,(3.16)

where {B1,1,B1,2, . . . ,B1,d1,2 } are the elements in B1(Ω) from Theorem 3.11.

Let G ∈ L
2(Ω), f ∈ L

2(Ω), ζ ∈ Cd1,2 , and let ε decay with order κ > 0. First of all note that (3.1) admits
at most one static solution, as for the homogeneous problem E ∈ εH−1,Γ1,Γ2(Ω)∩B1(Ω)

⊥ε together with
(3.13) and Theorem 3.11 yields E = 0. Turning to existence, necessary conditions are obviously

G ∈ rotR−1,Γ1
(Ω) and f ∈ divD−1,Γ2

(Ω),

the latter one being no further restriction as by Lemma 3.9, Remark 3.10 we have divD−1,Γ2
(Ω) = L

2(Ω).
But in fact this conditions are already sufficient since Lemma 3.9 also yields

E1 ∈ R−1,Γ1
(Ω) ∩ ε−1

0D−1,Γ2
(Ω) and E2 ∈ D−1,Γ2

(Ω) ∩ ε 0R−1,Γ1
(Ω)

with rotE1 = G and divE2 = f . Thus,

Ê := E1 + ε−1E2 ∈ R−1,Γ1
(Ω) ∩ ε−1

D−1,Γ2
(Ω)

already satisfies

rot Ê = rotE1 = G and div εÊ = divE2 = f .

Moreover, assuming we are able to construct H ∈ εH−1,Γ1,Γ2(Ω) = εHΓ1,Γ2(Ω) with

〈H ,B1,ℓ 〉L2
ε(Ω)

= ζℓ − 〈 Ê ,B1,ℓ 〉L2
ε(Ω)

:= ζ̃ℓ , ℓ = 1, . . . , d1,2 ,(3.17)

the sum

E := Ê +H ∈ R−1,Γ1
(Ω) ∩ ε−1

D−1,Γ2
(Ω)

solves

rotE = G , div εE = f , 〈E ,B1,ℓ 〉L2
ε(Ω)

= ζℓ ( ℓ = 1, . . . , d1,2 ) ,

hence E is a static solution of (3.1). It remains to construct H such that (3.17) holds. For that we
decompose Bℓ according to Remark 3.10 in

B1,ℓ = ∇wℓ +Hℓ ∈ ∇H1
−1,Γ1

(Ω)⊕ε εHΓ1,Γ2(Ω) , ℓ = 1, . . . , d1,2 ,
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noting that by Theorem 3.11 {Hℓ}ℓ is a basis of εHΓ1,Γ2(Ω) and w.l.o.g. orthonormal in L
2
ε(Ω). Then

H :=
∑

j=1,...,d1,2

ζ̃jHj ∈ εHΓ1,Γ2(Ω)

indeed satisfies

〈H ,B1,ℓ 〉L2
ε(Ω)

= 〈H ,∇wℓ 〉L2
ε(Ω)︸ ︷︷ ︸

=0

+
∑

j=1,...,d1,2

ζ̃j 〈Hj , Hℓ 〉L2
ε(Ω)

= ζ̃ℓ , ℓ = 1, . . . , d1,2 .

and we have solved the electro-static problem (3.1).

Theorem 3.15. Let ε be κ− C
1−decaying with κ > 0. For all (G, f) ∈ L

2(Ω)× L
2(Ω) with

G ∈ 0DΓ1(Ω) := 0DΓ1
(Ω) ∩B2(Ω)

⊥

and ζ ∈ Cd1,2 there exists a unique static solution

E ∈ R−1,Γ1
(Ω) ∩ ε−1

D−1,Γ2
(Ω)

of (3.1). In addition, the corresponding solution operator

Lε,0 : 0DΓ1(Ω)× L
2(Ω)× Cd1,2 −→ R−1,Γ1

(Ω) ∩ ε−1
D−1,Γ2

(Ω)

(G, f, ζ) 7−→ E

is continuous.

Proof. It remains to show that Lε,0 is bounded. But this is a direct consequence of Lemma 3.12, (ii). �

Swapping Γ1 and Γ2 resp. ε and µ we obtain a corresponding result for the magneto-static problem (3.2).

Theorem 3.16. Let µ be κ− C
1−decaying with κ > 0. For all (F, g) ∈ L

2(Ω)× L
2(Ω) with

F ∈ 0DΓ2(Ω) := 0DΓ2
(Ω) ∩B1(Ω)

⊥

and θ ∈ Cd2,1 there exists a unique static solution

H ∈ R−1,Γ2
(Ω) ∩ µ−1

D−1,Γ1
(Ω)

of (3.2). In addition, the corresponding solution operator

Lµ,0 : 0DΓ2(Ω)× L
2(Ω)× Cd2,1 −→ R−1,Γ2

(Ω) ∩ µ−1
D−1,Γ1

(Ω)

(F, g, θ) 7−→ H

is continuous.

Remark 3.17. By Theorem 3.15 and Theorem 3.16 for all

(
F, g,G, f, ζ, θ

)
∈ 0DΓ2(Ω)× L

2(Ω)× 0DΓ1(Ω)× L
2(Ω)× C

d1,2 × C
d2,1

the electro-magneto static system (3.1), (3.2) has a unique solution

(E,H) ∈
(
R−1,Γ1

(Ω) ∩ ε−1
D−1,Γ2

(Ω)
)
×
(
R−1,Γ2

(Ω) ∩ µ−1
D−1,Γ1

(Ω)
)
.

The corresponding solution operator is continuous and will be denoted by LΛ,0
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4. The Time-Harmonic Problem ω 6= 0

Having established the static solution theory we treat the time-harmonic case. For sake of brevity we
just concentrate on the main results and refer to [17] for the details and some additional results. Let

ω ∈ C+ := {z ∈ C : Im (z) ≥ 0} with ω 6= 0 .

We are looking for an electro-magnetic field (E,H) ∈ Rloc,Γ1
(Ω) × Rloc,Γ2

(Ω) such that for given data

(F,G) ∈ L
2
loc(Ω)× L

2
loc(Ω) it holds

(M + iωΛ ) (E,H) = (F,G) .

By (2.2) the “Maxwell-operator”

M : RΓ1
(Ω)× RΓ2

(Ω) ⊂ L
2
ε(Ω)× L

2
µ(Ω) −→ L

2
ε(Ω)× L

2
µ(Ω) , (E,H) 7−→ iΛ−1M(E,H) ,

is self-adjoint which in the case of ω ∈ C \R immediately yields an L
2-solution theory.

Theorem 4.1. Let ω ∈ C\R. For every (F,G) ∈ L
2(Ω)×L

2(Ω) system (1.1), (1.2) has a unique solution

(E,H) ∈ RΓ1
(Ω)× RΓ2

(Ω) .

Moreover, the solution operator, which we denote by LΛ,ω := i(M− ω )−1Λ−1 is continuous.

The case ω ∈ R \ {0} is more challenging, since we want to solve in the continuous spectrum of M.

Clearly this cannot be done for every (F,G) ∈ L
2(Ω) × L

2(Ω), since otherwise ω 6∈ σ(M). Thus we have

to work in certain subspaces of L2(Ω)× L
2(Ω) and we have to generalize the solution concept.

Definition 4.2. Let ω ∈ R\{0} and (F,G) ∈ L
2
loc(Ω)×L

2
loc(Ω). We call (E,H) “(radiating) solution” of

the time-harmonic boundary value problem (1.1), (1.2), if

(E,H) ∈ R<− 1
2 ,Γ1

(Ω)× R<− 1
2 ,Γ2

(Ω)

and satisfies
(
M+ iωΛ

)
(E,H) = (F,G) ,

(
Λ0 +

√
ε0µ0 Ξ

)
(E,H) ∈ L

2
>− 1

2
(Ω)× L

2
>− 1

2
(Ω) ,(4.1)

where

Λ0 :=

(
ε0 0
0 µ0

)
and Ξ :=

(
0 −ξ×
ξ× 0

)
.

Conveniently, we can apply the same methods as in [19], see also [30, 33, 34], to obtain a solution
theory. In particular, we use the limiting absorption principle introduced by Eidus and approximate
solutions to ω ∈ R \ {0} by solutions corresponding to ω ∈ C+ \R. Again, Weck’s local selection theorem
is the crucial tool in the limit process. Additionally, the polynomial decay of eigenfunctions as well as
an a-priori estimate for solutions corresponding to non-real frequencies are needed and both are obtained
by reduction to similar results known for the Helmholtz equation in the whole of R3. For the details see
[17].

Theorem 4.3 (Generalized Fredholm Alternative ). Let ω ∈ R \ {0} and let ε,µ be κ-decaying with
κ > 1. Moreover, let

Ngen(M− ω ) :=
{
(E,H) : (E,H) is a radiating solution of (M + iωΛ ) (E,H) = 0

}
,

σgen(M) :=
{
ω ∈ C \ {0} : Ngen(M− ω ) 6= {0}

}
.

Then:

(i) For all t ∈ R

Ngen(M− ω ) ⊂
(
Rt,Γ1

(Ω) ∩ ε−1 rotRt,Γ2
(Ω)

)
×

(
Rt,Γ2

(Ω) ∩ µ−1 rotRt,Γ1
(Ω)

)
.

(ii) dim Ngen(M− ω ) <∞ .

(iii) σgen(M) ⊂ R \ {0} and σgen(M) has no accumulation point in R \ {0} .
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(iv) For all (F,G) ∈ L
2
> 1

2
(Ω)× L

2
> 1

2
(Ω) there exists a radiating solution (E,H) of (1.1), (1.2), if and

only if

∀ (e, h) ∈ Ngen(M− ω ) : 〈 (F,G) , (e, h) 〉
L2(Ω)

= 0 .

Moreover, the solution (E,H) can be chosen, such that

∀ (e, h) ∈ Ngen(M − ω ) : 〈 (E,H) , (e, h) 〉
L2
Λ(Ω)

= 0 .

Then (E,H) is uniquely determined.

(v) For all s,−t > 1/2 the solution operator

LΛ,ω :
(
L
2
s(Ω)× L

2
s(Ω)

)
∩ Ngen(M− ω )⊥ −→

(
Rt,Γ1

(Ω)× Rt,Γ2
(Ω)

)
∩ Ngen(M− ω )⊥Λ

defined by (4) is continuous. Here ⊥Λ indicates the orthogonal complement in L
2
Λ(Ω).

Remark 4.4. By Theorem 4.1 and Theorem 4.3 and for all

(F,G) ∈
(
L
2
> 1

2
(Ω)× L

2
> 1

2
(Ω)

)
∩ Ngen(M− ω )⊥

the time-harmonic Maxwell system (1.1), (1.2) has a unique radiating solution

(E,H) ∈ R<− 1
2 ,Γ1

(Ω)× R<− 1
2 ,Γ2

(Ω) with
(
Λ0 +

√
ε0µ0 Ξ

)
(E,H) ∈ L

2
>− 1

2
(Ω)× L

2
>− 1

2
(Ω) .

The corresponding solution operator is continuous and will be denoted by LΛ,ω.

5. Low Frequency Asymptotics ω → 0

In order to discuss the low frequency asymptotics we first have to ensure that σgen(M) does not
accumulate at zero. For that we show an estimate emerging from a representation formula for the
homogeneous, isotropic whole space problem, i.e., Ω = R3 and Λ = Λ0.

Proposition 5.1. Ω = R3, Λ = Λ0 and ω ∈ C+ \ {0}, it holds
Ngen(M− ω ) = {0} .

Thus the solution operator LΛ0,ω is well defined for all (F,G) ∈ L
2
> 1

2

× L
2
> 1

2

.

Proof. Let (E,H) ∈ Ngen(M− ω ). By Theorem 4.3 (i) and the differential equation we have

(E,H) ∈ (R ∩ 0D )× (R ∩ 0D ) with M (E,H) = −iωΛ0(E,H) .

Hence, by [9, Lemma 4.2], (E,H) ∈ (Hk ∩ 0D )× (Hk ∩ 0D ) for all k ∈ N0 and we obtain

∆ (E,H) = M2(E,H) = −ω2ε0µ0 (E,H) .

In other words, (E,H) ∈ H
2×H

2 satisfies the Helmholtz-equation with right hand side zero. If ω ∈ C\R
we are done, since ∆ : H2 ⊂ L

2 −→ L
2 is selfadjoint and therefore σ(∆) ⊂ R, yielding (E,H) = (0, 0). For

ω ∈ R \ {0} the assertion follows using the Rellich estimate ( cf. [12], p. 59 ) and the unique continuation
principle. �

Now, let Ω = R3, Λ = Λ0, ω ∈ C+ \ {0}, (F,G) ∈ C̊
∞ × C̊

∞, and let (E,H) := LΛ0,ω (F,G) be the
corresponding radiating solution. Again, by [9, Lemma 4.2] and the differential equation, we obtain

(E,H) ∈
(
H

2
<− 1

2
∩ C

∞ )
×
(
H

2
<− 1

2
∩ C

∞ )
and

(
∆+ ε0µ0 ω

2
)
(E,H) = (F̂ , Ĝ) ∈ C̊

∞ × C̊
∞ ,

where

(F̂ , Ĝ) := (M− iωΛ̃0 ) (F,G) − i

ω
Λ−1
0 (∇ divF,∇ divG) , Λ̃0 :=

(
µ0 0
0 ε0

)
.(5.1)
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In fact, (E,H) is the unique radiating solution of the whole space problem ( cf. [34, Section 4] )

(E,H) ∈ H
2
<− 1

2
×H

2
<− 1

2
,

(∆ + ω2ε0µ0 ) (E,H) = (F̂ , Ĝ) ,

exp
(
− iω

√
ε0µ0 r

)
(E,H) ∈ H

1
>− 3

2
× H

1
>− 3

2
.

For non-real frequencies ω ∈ C+ \R this is trivial, because then [9, Lemma 4.2] yields (E,H) ∈ H
2 ×H

2

and the Laplacian is self-adjoint on H
2 ×H

2. For ω ∈ R \ {0} the radiation condition (4.1) shows

(ξ · E, ξ ·H) ∈ L
2
>− 1

2
× L

2
>− 1

2

and via the differential equation and the radiation condition we obtain

rot
(
exp

(
− iω

√
ε0µ0 r

)
E
)
= exp

(
− iω

√
ε0µ0 r

) (
G− iω

(
µ0H +

√
ε0µ0 ξ × E

) )
∈ L

2
>− 1

2

,

div
(
exp

(
− iω

√
ε0µ0 r

)
E
)
= −i exp

(
− iω

√
ε0µ0 r

)(
ω
√
ε0µ0 ξ ·E + (ωε0)

−1 divF
)
∈ L

2
>− 1

2

.

Analogously, we see the corresponding results for H . Hence, by [9, Lemma 4.2],

exp
(
− iω

√
ε0µ0 r

)
(E,H) ∈ H

1
>− 3

2
× H

1
>− 3

2
.

Thus, by [11, Theorem 4.27, Remark 4.28] we may describe (E,H) using the representation formula of
the Helmholtz-equation, i.e.,

E = φω ⋆ F̂ := (φω ∗ F̂ℓ )ℓ=1,2,3 , H = φω ⋆ Ĝ := (φω ∗ Ĝℓ )ℓ=1,2,3 ,

where φω = −(4πr)−1 exp
(
− iω

√
ε0µ0 r

)
is the fundamental solution of the scalar Helmholtz-equation

and ∗ denotes scalar convolution in R3. Then (5.1) yields

E = φω ⋆
(
− rotG− iωµ0 F −

i

ωε0
∇ divF

)
, H = φω ⋆

(
rotF − iωε0G−

i

ωµ0
∇ divG

)
,

a representation formula for (E,H) provided (F,G) ∈ C̊
∞ × C̊

∞. Next we would like to allow more
general right hand sides (F,G). For that we move some of the differential operators from F resp. G to
φω, illustrating the procedure for φω ⋆ rotF and φω ⋆∇ divF .

As both fields F and G are compactly supported we do not have to worry about integrability of φω at

infinity. In U1 we can estimate |φω | ≤ c · r−1 and |∇φω| ≤ c · r−2, hence φω,∇φω ∈ L
1(U1). Moreover,

with η̃ ( the cut-off function from above ) we define for n ∈ N and fixed x ∈ R
3 the functions

ηn(y) := η̃(n · |x− y|).
Then |∇ηn| ≤ c · |x− y|−1 holds uniformly in n, such that

| ηn · τxφω | ≤ c · |x− y|−1 , | ∂jηn · τxφω | ≤ c · |x− y|−2 , | ηn · ∂j(τxφω) | ≤ c · |x− y|−2 ,

where τxφω(y) := φω(x− y). Lebesgue’s dominated convergence theorem shows
(
φω ∗ ∂jFk

)
(x) = lim

n→∞
〈 τxφω , ∂j(ηnFk) 〉L2 = lim

n→∞
〈 τx∂jφω , ηnFk 〉L2 =

(
∂jφω ∗ Fk

)
(x) ,

which yields φω ⋆∇ divF = divF ⋆∇φω and

−φω ⋆ rotF =




φω ∗ ∂3F2 − φω ∗ ∂2F3

φω ∗ ∂1F3 − φω ∗ ∂3F1

φω ∗ ∂2F1 − φω ∗ ∂1F2


 =




F2 ∗ ∂3φω − F3 ∗ ∂2φω

F3 ∗ ∂1φω − F1 ∗ ∂3φω

F1 ∗ ∂2φω − F2 ∗ ∂1φω


 =: F ⊛∇φω .

Theorem 5.2. Let 0 6= ω ∈ K ⋐ C+ and ε0, µ0 ∈ R+. Furthermore, let 1/2 < s < 3/2, t := s− 2, and

(F,G) ∈ Ds ×Ds. Then for (E,H) := LΛ0,ω(F,G) the representation formulas

E = G⊛∇φω − iωµ0φω ⋆ F − i

ωε0
divF ⋆∇φω ,(5.2)

H = −F ⊛∇φω − iωε0φω ⋆ G− i

ωµ0
divG ⋆∇φω(5.3)
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hold in the sense of L
2
t . Moreover, there exist c > 0, such that for all ω ∈ K\{0} and all (F,G) ∈ Ds×Ds

‖ (E,H) ‖
Rt
≤ c

(
‖ (F,G) ‖

L2
s
+

1

|ω| ‖ (divF, divG) ‖
L2s

)
.

Proof. Since C̊
∞ ⊂ Ds is dense, we choose a sequence

(
(Fn, Gn)

)
n∈N
⊂ C̊

∞ × C̊
∞ converging to (F,G)

and define (En, Hn) = LΛ0,ω(Fn, Gn) ∈ L
2
t × L

2
t . Then Remark 4.4 yields convergence of

(
(En, Hn)

)
n∈N

to (E,H) ∈ Rt × Rt and as shown above, we may represent (En, Hn) by

En = Gn ⊛∇φω − iωµ0φω ⋆ Fn −
i

ωε0
divFn ⋆∇φω ,(5.4)

Hn = −Fn ⊛∇φω − iωε0φω ⋆ Gn −
i

ωµ0
divGn ⋆∇φω .(5.5)

The involved convolution kernels essentially consist of φω and ∂jφω , which can be estimated by

|φω| , |∂jφω | ≤ c ·
(
|x− y|−1 + |x− y|−2

)
, ( j = 1, 2, 3 ) .

Moreover, from [13, Lemma 1] we obtain that integral operators with kernels of the form |x − y|α−β−3

map L
2
α continuously to L

2
β , if −3/2 < α < β < 3/2. Hence, by choosing

−3/2 < t = s− 2 < t̃ := s− 1 < s < 3/2 ,

we have

|x− y|−1 = |x− y|s−t−3 resp. |x− y|−2 = |x− y|s−t̃−3 ,

and the right hand sides of (5.4) and (5.5) define bounded linear operators from L
2
s to L

2
t . Passing to

the limit n −→∞ in (5.4),(5.5) we obtain the asserted representation formulas. By the continuity of the
convolution operators we have the estimate

‖ (E,H) ‖
L2
t
≤ c

(
‖ (F,G) ‖

L2
s
+ |ω|−1 ‖ (divF, divG) ‖

L2s

)

which holds uniformly in ω. Finally the differential equation yields the asserted estimate. �

A similar estimate also holds for radiating solutions in exterior weak Lipschitz domains.

Corollary 5.3. Let 1/2 < s < 3/2, t := s− 2, and let ε, µ be κ− C
1−decaying with order κ > 2, as well

as let K ⋐ C+. Then there exist c, δ > 0 such that for all 0 6= ω ∈ K and

(F,G) ∈
(
Ds(Ω)×Ds(Ω)

)
∩ Ngen(M − ω)⊥

it holds

‖LΛ,ω(F,G) ‖
L2
t (Ω)
≤ c

(
‖ (F,G) ‖

L2s(Ω)
+

1

|ω| ‖ (divF, divG) ‖
L2
s(Ω)

+ ‖LΛ,ω(F,G) ‖
L2(Ωδ)

)
.

Moreover, by the differential equation the ‖ · ‖
L2
t (Ω)
−norm on the left hand side can be replaced by ‖ · ‖

Rt(Ω)
.

Proof. Let (E,H) = LΛ,ω(F,G) (which exists by Remark 4.4 ) and r̃ > r̂ such that ε, µ ∈ C
1(qUr̃). Then

(Ẽ, H̃) := ηr̃(E,H) ∈ R<− 1
2
× R<− 1

2
,

and as (M + iωΛ ) (E,H) = (F,G) it holds

(div εE, div µH) = − i

ω
(divF, divG) ∈ L

2
s(Ω)× L

2
s(Ω) ,(5.6)

such that by Lemma 3.6 we even have

(E,H) ∈ H
1
<− 1

2
(supp ηr̃)×H

1
<− 1

2
(supp ηr̃) , especially (Ẽ, H̃) ∈ H

1
<− 1

2
×H

1
<− 1

2
.

Moreover, (Ẽ, H̃) satisfies the radiation condition
(
Λ0 +

√
ε0µ0 Ξ

)
(Ẽ, H̃) ∈ L

2
>− 1

2
(Ω)× L

2
>− 1

2
(Ω)
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and (as κ > 2 ≥ s+ 1/2) solves
(
M+ iωΛ0

)
(Ẽ, H̃) = CM,ηr̃

(E,H)− iω
(
Λ− Λ0

)
(Ẽ, H̃) + ηr̃(F,G) =: (F̃ , G̃) ∈ Ds ×Ds ,(5.7)

where CA,B := AB − BA. We obtain (Ẽ, H̃) = LΛ0,ω(F̃ , G̃) and Theorem 5.2 yields some c > 0 such
that

∥∥ (Ẽ, H̃)
∥∥
L2t
≤ c

( ∥∥ (F̃ , G̃)
∥∥
L2
s

+
1

ω

∥∥ (div F̃ , div G̃)
∥∥
L2
s

)
(5.8)

independent of ω, (F̃ , G̃) or (Ẽ, H̃). Furthermore, (5.6) and the differential equation (5.7) show

divF = iω div εE , divG = iω div µH , in Ω ,(5.9)

div F̃ = iωε0 div Ẽ , div G̃ = iωµ0 div H̃ , in R
3 ,(5.10)

such that combining (5.8) and (5.10) it holds

∥∥ (E,H)
∥∥
L2
t (Ω)
≤ c

(∥∥ (E,H)
∥∥
L2(Ω2r̃)

+
∥∥ (Ẽ, H̃)

∥∥
L2t (

qUr̃)

)

≤ c
(∥∥ (E,H)

∥∥
L2(Ω2r̃)

+
∥∥ (F̃ , G̃)

∥∥
L2
s

+
1

|ω|
∥∥ (div F̃ , div G̃)

∥∥
L2
s

)

≤ c
(∥∥ (E,H)

∥∥
L2
s−κ(Ω)

+
∥∥ (F,G)

∥∥
L2
s(Ω)

+
∥∥ (div ε0Ẽ, div µ0H̃)

∥∥
L2
s

)
.

With (5.9) the last term on the right hand side can be estimated by
∥∥ (div ε0Ẽ, div µ0H̃)

∥∥
L2
s

≤ c
(
‖ (E,H) ‖

L2(Ω2r̃)
+ ‖ (div ε0E, div µ0H) ‖

L2
s(supp ηr̃)

)

≤ c
(
‖ (E,H) ‖

L2(Ω2r̃)
+ ‖ (div εE, div µH) ‖

L2
s(supp ηr̃)

+ ‖ (div ε̂E, div µ̂H) ‖
L2s(supp ηr̃)

)

≤ c
(
‖ (E,H) ‖

L2(Ω2r̃)
+

1

|ω| ‖ (divF, divG) ‖
L2
s(Ω)

+ ‖ (E,H) ‖
H1

s−κ−1(supp ηr̃)

)
.

We end up with
∥∥ (E,H)

∥∥
L2
t (Ω)
≤ c

(
‖ (E,H) ‖

L2s−κ(Ω)
+ ‖ (E,H) ‖

H1
s−κ−1(supp ηr̃)

+ ‖ (F,G) ‖
L2s(Ω)

+
1

|ω| ‖ (div F, divG) ‖
L2
s(Ω)

)

and the estimate from Lemma 3.6 as well as the differential equation together with (5.9) yield

‖ (E,H) ‖
L2
t (Ω)
≤ c

(
‖ (E,H) ‖

L2s−κ(Ω)
+ ‖ (F,G) ‖

L2
s(Ω)

+
1

|ω| ‖ (div F, divG) ‖
L2
s(Ω)

)
.

Finally, as κ > 2 the assertion follows by

‖ (E,H) ‖2
L2
s−κ(Ω)

≤ ‖ (E,H) ‖2
L2(Ωδ)

+
(
1 + δ2

)2−κ · ‖ (E,H) ‖2
L2t (Ω)

,

choosing δ > r̂ big enough. �

Theorem 5.4. Let 1/2 < s < 3/2, t := s− 2, and let ε, µ be κ− C
1−decaying with order κ > 2, and let

B1(Ω) = {B1,1, . . . ,B1,d1,2} ⊂ RΓ1
(Ω) resp. B2(Ω) = {B2,1, . . . ,B2,d2,1} ⊂ RΓ2

(Ω)

be the sets from Theorem 3.11. Then:

(i) σgen(M) has no accumulation point at zero. In particular, there exists some ω̃ > 0 such that

σgen(M) ∩ C+,ω̃ = ∅ with C+,ω̃ :=
{
ω ∈ C+ : |ω| ≤ ω̃

}
.

(ii) LΛ,ω is well defined on the whole of L2
> 1

2

(Ω)× L
2
> 1

2

(Ω) for all ω ∈ C+,ω̃ \ {0}.
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(iii) There exists a constant c > 0 such that

‖LΛ,ω(F,G) ‖
L2
t (Ω)
≤ c

(
‖ (F,G) ‖

L2
s(Ω)

+
1

|ω| ‖ (divF, divG) ‖
L2
s(Ω)

+
1

|ω|
∑

ℓ=1,...,d1,2

|〈F ,B1,ℓ 〉L2(Ω)
|+ 1

|ω|
∑

ℓ=1,...,d2,1

|〈G ,B2,ℓ 〉L2(Ω)
|
)

holds for all ω ∈ C+,ω̃ \ {0} and (F,G) ∈ Ds,Γ2
(Ω)×Ds,Γ1

(Ω). Using the differential equation, the

‖ · ‖
L2
t (Ω)
−norm on the left hand side may be replaced by the natural norm in

(
Rt,Γ1

(Ω) ∩ ε−1
Dt,Γ2

(Ω)
)
×
(
Rt,Γ2

(Ω) ∩ µ−1
Dt,Γ1

(Ω)
)
.

Proof. Assuming that zero is an accumulation point of σgen(M) there exist a sequence (ωn)n∈N ⊂ R \ {0}
( cf. Theorem 4.3 (iii) ) tending to zero and a sequence

(
(En, Hn)

)
n∈N

with (En, Hn) ∈ Ngen(M − ωn)

and

‖ (En, Hn) ‖L2
t (Ω)

= 1 for some − 3/2 < t < −1/2 .

Using the differential equation we obtain (En, Hn) ∈
(
Rt,Γ1

(Ω)∩ε−1
0Dt,Γ2

(Ω)
)
×
(
Rt,Γ2

(Ω)∩µ−1
0Dt,Γ1

(Ω)
)

with

‖ (rotEn, rotHn) ‖L2
t (Ω)
≤ c · |ωn| · ‖ (En, Hn) ‖L2

t (Ω)

n→∞−−−−→ 0 .

Consequently
(
(En, Hn)

)
n∈N

is bounded in
(
Rt,Γ1

(Ω) ∩ ε−1
Dt,Γ2

(Ω)
)
×
(
Rt,Γ2

(Ω) ∩ µ−1
Dt,Γ1

(Ω)
)
.

Thus Weck’s local selection theorem yields a subsequence
(
(Eπ(n), Hπ(n))

)
n∈N

converging in L
2
t̃
(Ω)×L2

t̃
(Ω)

for all t̃ < t. In particular, as t > −3/2 we may assume t > t̃ ≥ −3/2. Then
(
(Eπ(n), Hπ(n))

)
n∈N

con-

verges in
(
R

t̃,Γ1
(Ω) ∩ ε−1

0Dt̃,Γ2
(Ω)

)
×
(
R
t̃,Γ2

(Ω) ∩ µ−1
0Dt̃,Γ1

(Ω)
)
to some

(E,H) ∈ εHt̃,Γ1,Γ2
(Ω)× µHt̃,Γ2,Γ1

(Ω)
(3.13)
= εHΓ1,Γ2(Ω)× µHΓ2,Γ1(Ω) .

In addition, the differential equation together with (3.15) yields

(Eπ(n), Hπ(n)) ∈ B1(Ω)
⊥ε ×B2(Ω)

⊥µ =⇒ (E,H) ∈ B1(Ω)
⊥ε ×B2(Ω)

⊥µ .

Therefore by Theorem 3.11

(E,H) ∈
(
εHΓ1,Γ2(Ω) ∩B1(Ω)

⊥ε
)
×
(
µHΓ2,Γ1(Ω) ∩B2(Ω)

⊥µ
)
= {0} × {0} .

Finally Corollary 5.3 yields constants c, δ > 0 independent of n such that

1 =
∥∥ (Eπ(n), Hπ(n))

∥∥
L2
t (Ω)
≤ c ·

∥∥ (Eπ(n), Hπ(n))
∥∥
L2(Ωδ)

n→∞−−−−→ 0 ,

a contradiction which proves (i) resp. (ii). In order to prove (iii), we assume that the asserted estimate
is wrong. Then we obtain sequences (ωn)n∈N ⊂ C+,ω̃ \ {0} tending to zero and

(
(Fn, Gn)

)
n∈N
⊂ Ds,Γ2

(Ω)×Ds,Γ1
(Ω) with ‖LΛ,ωn

(Fn, Gn) ‖L2
t (Ω)

= 1

such that

‖ (Fn, Gn) ‖L2s(Ω)

n−→∞−−−−−→ 0 , |ωn|−1 · ‖ (divFn, divGn) ‖L2s(Ω)

n−→∞−−−−−→ 0 ,

and

|ωn|−1 · |〈Fn ,B1,ℓ 〉L2(Ω)
| n−→∞−−−−−→ 0 , ℓ = 1, . . . , d1,2 ,(5.11)

|ωn|−1 · |〈Gn ,B2,ℓ 〉L2(Ω)
| n−→∞−−−−−→ 0 , ℓ = 1, . . . , d2,1 .(5.12)

As above, the differential equation shows
(
(En, Hn)

)
n∈N

with (En, Hn) := LΛ,ωn
(Fn, Gn) is bounded in

(
Rt,Γ1

(Ω) ∩ ε−1
Dt,Γ2

(Ω)
)
×
(
Rt,Γ2

(Ω) ∩ µ−1
Dt,Γ1

(Ω)
)
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and again Weck’s local selection theorem provides a subsequence
(
(Eπ(n), Hπ(n))

)
n∈N

converging in

(
Rt̃,Γ1

(Ω) ∩ ε−1
Dt̃,Γ2

(Ω)
)
×
(
Rt̃,Γ2

(Ω) ∩ µ−1
Dt̃,Γ1

(Ω)
)

for all −3/2 ≤ t̃ < t. We obtain

(E,H) := lim
n→∞

(Eπ(n), Hπ(n)) ∈ εHt̃,Γ1,Γ2
(Ω)× µHt̃,Γ2,Γ1

(Ω)
(3.13)
= εHΓ1,Γ2(Ω)× µHΓ2,Γ1(Ω) .

Moreover, by (5.11) we compute for ℓ = 1, . . . , d1,2

0
n−→∞←−−−−− |ωn|−1 · |〈Fn ,B1,ℓ 〉L2(Ω)

|

= |ωn|−1 · | 〈 rotHn ,B1,ℓ 〉L2(Ω)︸ ︷︷ ︸
0

+iωn〈 εEn ,B1,ℓ 〉L2(Ω)
| n−→∞−−−−−→ |〈 εE ,B1,ℓ 〉L2(Ω)

| ,

hence E ∈ B1(Ω)
⊥ε and with (5.12) analogously H ∈ B2(Ω)

⊥µ . Thus (E,H) must vanish and again
Corollary 5.3 yields constants c, δ > 0 independent of n such that

1 = ‖ (En, Hn) ‖L2
t (Ω)

≤ c
(
‖ (Fn, Gn) ‖L2s(Ω)

+ |ωn|−1 ‖ (divFn, divGn) ‖L2s(Ω)
+ ‖ (En, Hn) ‖L2(Ωδ)

)
n−→∞−−−−−→ 0 ,

a contradiction. �

We are ready to prove our main result:

Theorem 5.5. Let ε, µ be κ−C
1−decaying with order κ > 2, 1/2 < s < 3/2, t := s− 2, and let ω̃ be the

radius from Theorem 5.4. Then for (ωn)n∈N ⊂ C+,ω̃ \ {0} tending to zero and
(
(Fn, Gn)

)
n∈N
⊂ Ds,Γ2

(Ω)×Ds,Γ1
(Ω)

such that

(Fn, Gn)
n−→∞−−−−−→ (F,G) in L

2
s(Ω)× L

2
s(Ω) ,

−iω−1
n (div Fn, divGn)

n−→∞−−−−−→ (f, g) in L
2
s(Ω)× L

2
s(Ω) ,

−iω−1
n 〈Fn ,B1,ℓ 〉L2(Ω)

n−→∞−−−−−→ ζℓ in C , ℓ = 1, . . . , d1,2 ,

−iω−1
n 〈Gn ,B2,ℓ 〉L2(Ω)

n−→∞−−−−−→ θℓ in C , ℓ = 1, . . . , d2,1 ,

the sequence
(
(En, Hn)

)
n∈N

:=
(
LΛ,ωn

(Fn, Gn)
)
n∈N

of radiating solutions converges for all t̃ < t in

(
Rt̃,Γ1

(Ω) ∩ ε−1
Dt̃,Γ2

(Ω)
)
×
(
Rt̃,Γ2

(Ω) ∩ µ−1
Dt̃,Γ1

(Ω)
)

to the static solutions (E,H) ∈
(
R−1,Γ1

(Ω) ∩ ε−1
D−1,Γ2

(Ω)
)
×
(
R−1,Γ2

(Ω) ∩ µ−1
D−1,Γ1

(Ω)
)
of

rotE = G , div εE = f , 〈E ,B1,ℓ 〉L2
ε(Ω)

= ζℓ ( ℓ = 1, . . . , d1,2 ) ,

rotH = F , div µH = g , 〈H ,B2,ℓ 〉L2
µ(Ω)

= θℓ ( ℓ = 1, . . . , d2,1 ) .

Proof. By Theorem 5.4 (iii) the sequence
(
(En, Hn)

)
n∈N

is bounded in

(
Rt,Γ1

(Ω) ∩ ε−1
Dt,Γ2

(Ω)
)
×
(
Rt,Γ2

(Ω) ∩ µ−1
Dt,Γ1

(Ω)
)

and the differential equation yields

M(En, Hn) = (Fn, Gn)− iωnΛ(En, Hn) , (div εEn, div µHn) = −
i

ωn
(divFn, divGn) ,

such that by assumption

(rotEn, rotHn)
n−→∞−−−−−→ (F,G) in L

2
t (Ω)× L

2
t (Ω) ,

(div εEn, div µHn)
n−→∞−−−−−→ (f, g) in L

2
s(Ω)× L

2
s(Ω) .
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Moreover, for ℓ = 1, . . . , d1,2 we compute by (3.15)

〈En ,B1,ℓ 〉L2
ε(Ω)

= − i

ωn
〈 rotHn ,B1,ℓ 〉L2(Ω)︸ ︷︷ ︸

=0

− i

ωn
〈Fn ,B1,ℓ 〉L2(Ω)

n−→∞−−−−−→ ζℓ

and analogously 〈Hn ,B2,ℓ 〉L2µ(Ω)

n−→∞−−−−−→ θℓ for ℓ = 1, . . . , d2,1. By Weck’s local selection theorem we

may extract a subsequence
(
(Eπ(n), Hπ(n))

)
n∈N

with

(Eπ(n), Hπ(n))
n−→∞−−−−−→: (Ẽ, H̃) in L

2
t̃ (Ω)× L

2
t̃ (Ω)

for all −3/2 < t̃ < t. Then

(Ẽ, H̃) ∈
(
R>− 3

2 ,Γ1
(Ω) ∩ ε−1

D>− 3
2 ,Γ2

(Ω)
)
×
(
R>− 3

2 ,Γ2
(Ω) ∩ µ−1

D>− 3
2 ,Γ1

(Ω)
)

and (Ẽ, H̃) solves the electro-magneto static system

rot Ẽ = G , div εẼ = f , 〈 Ẽ ,B1,ℓ 〉L2
ε(Ω)

= ζℓ ( ℓ = 1, . . . , d1,2 ) ,

rot H̃ = F , div µH̃ = g , 〈 H̃ ,B2,ℓ 〉L2
µ(Ω)

= θℓ ( ℓ = 1, . . . , d2,1 ) .

Finally, the difference (e, h) := (E,H)− (Ẽ, H̃) satisfies

(e, h) ∈
(
εH>− 3

2 ,Γ1,Γ2
(Ω) ∩B1(Ω)

⊥ε
)
×
(
µH>− 3

2 ,Γ2,Γ1
(Ω) ∩B2(Ω)

⊥µ
)
.

Hence, by (3.13) and Theorem 3.11 we have (E,H) = (Ẽ, H̃) and due to the uniqueness of the limit

(E,H) even the whole sequence
(
(En, Hn)

)
n∈N

must converge to (E,H) in L
2
<t(Ω)× L

2
<t(Ω). �
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Appendix A. Proof of Theorem 3.11

Without loss of generality we concentrate on the construction of B1(Ω) for γ = 1. As mentioned, the
idea is to construct B1(Ω) using a basis B(Ωr̂) of HΓ1,r̂ ,Γ2(Ωr̂), Γ1,r̂ := Γ1∪Sr̂. More precisely, we define

Ωr̂
R3 \ Ω

Sr̂

Ω

Γ1

Γ1
Γ1

Γ2

Γ2

B1(Ω) :=
{
EΩ(B) : B ∈ B(Ωr̂)

}
⊂ 0RΓ1

(Ω) ,

where EΩ : L
2(Ωr̂) −→ L

2(Ω) extends functions resp. fields
defined on Ωr̂ by zero to Ω, and show the following:

Step 1: Choosing a basis B(Ωr̂) of HΓ1,r̂ ,Γ2(Ωr̂), extending
the elements in B(Ωr̂) by zero to Ω and projecting
them onto HΓ1,Γ2(Ω), we obtain a linearly indepen-
dent subset of HΓ1,Γ2(Ω),

Step 2: Choosing a basis B(Ω) of HΓ1,Γ2(Ω), restricting
the elements in B(Ω) to Ωr̂ and projecting them
onto HΓ1,r̂ ,Γ2(Ωr̂), we obtain a linearly independent
subset of HΓ1,r̂ ,Γ2(Ωr̂).

Then, Step 1 and Step 2 already imply ( cf. (3.14) )

|B1(Ω)| = dimHΓ1,r̂ ,Γ2(Ωr̂) = dimHΓ1,Γ2(Ω) = d1,2 <∞ .

Moreover, by Step 1 the projections of the elements in B1(Ω) along ∇H1
Γ1
(Ω) are linearly independent

and thus form a basis of the Dirichlet-Neumann fields HΓ1,Γ2(Ω). Hence, it just remains to show:

Step 3: HΓ1,Γ2(Ω) ∩B1(Ω)
⊥ = {0}
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Lemma A.1 (Step 1). Let π : 0RΓ1
(Ω) −→ HΓ1,Γ2(Ω) be the orthogonal projection given by

0RΓ1
(Ω) = ∇H1

−1,Γ1
(Ω)⊕ HΓ1,Γ2(Ω)(A.1)

from Remark 3.10. Then the composition

π ◦ EΩ : HΓ1,r̂ ,Γ2(Ωr̂) −→ HΓ1,Γ2(Ω)

is injective.

Proof. Let H ∈ HΓ1,r̂ ,Γ2(Ωr̂). Then EΩ(H) ∈ 0RΓ1
(Ω) and with (A.1) we can decompose

EΩ(H) = ∇w + θ ∈ ∇H1
−1,Γ1

(Ω)⊕ HΓ1,Γ2(Ω) .

To show injectivity we assume θ = 0. Then ∇w = EΩ(H) = 0 in qUr̂. Thus w is constant in qUr̂ and as

w ∈ H
1
−1,Γ1

(Ω) it has to vanish in qUr̂, hence w ∈ H
1
Γ1,r̂

(Ωr̂). By partial integration we conclude

‖H ‖2
L2(Ωr̂)

= 〈H ,∇w 〉
L2(Ωr̂)

= −〈divH ,w 〉
L2(Ωr̂)

= 0 .

�

Lemma A.2 (Step 2). Let π : 0DΓ2
(Ωr̂) −→ HΓ1,r̂ ,Γ2(Ωr̂) be the orthogonal projection given by

0DΓ2
(Ωr̂) = rotRΓ2

(Ωr̂)⊕ HΓ1,r̂ ,Γ2(Ωr̂)(A.2)

from Lemma 3.2 (iii). Moreover, let RΩr̂
: L2(Ω) −→ L

2(Ωr̂) be the operator restricting functions resp. fields
on Ω to Ωr̂. Then

π ◦ RΩr̂
: HΓ1,Γ2(Ω) −→ HΓ1,r̂ ,Γ2(Ωr̂)

is injective.

Proof. Let H ∈ HΓ1,Γ2(Ω). By (A.2), the restriction RΩr̂
(H) ∈ 0DΓ2

(Ωr̂) can be decomposed into

RΩr̂
(H) = rotE + θ ∈ rotRΓ2

(Ωr̂)⊕ HΓ1,r̂ ,Γ2(Ωr̂) .

To show injectivity we assume θ = 0. In Ωr̂ we have

H = RΩr̂
(H) = rotE with E ∈ RΓ2

(Ωr̂) .(A.3)

Furthermore, H ∈ 0R(qUr̂) and as the Neumann-fields H∅,Sr̂
(qUr̂) = 0R(qU(r̂)) ∩ 0DSr̂

(qU(r̂)) = {0} are

trivial ( the dimension is determined by the number of handles of qUr̂ , cf. [14, 27] ) Lemma 3.9 yields

0R(qUr̂) = ∇H1
−1(qUr̂)⊕ H∅,Sr̂

(qUr̂) = ∇H1
−1(qUr̂) .

Thus, there exists w ∈ H
1
−1(

qUr̂) such that H = ∇w in qUr̂. Using a suitable extension operator ( e.g., the

one of Stein ), we extend w to ŵ ∈ H
1
−1,Γ(Ω). Then H − ∇ŵ ∈ 0RΓ1

(Ω) with H − ∇ŵ = 0 in qUr̂ and
hence

H −∇ŵ ∈ 0RΓ1,r̂
(Ωr̂) , Γ1,r̂ = Γ1 ∪ Sr̂ .(A.4)

From (A.4) and (A.3) we conclude

‖H ‖2
L2(Ω)

= 〈H ,H −∇ŵ 〉
L2(Ω)

+ 〈H ,∇ŵ 〉
L2(Ω)

= 〈 rotE ,H −∇ŵ 〉
L2(Ωr̂)

− 〈divH , ŵ 〉
L2(Ω)︸ ︷︷ ︸

=0

= 〈E , rot(H −∇ŵ) 〉
L2(Ωr̂)

= 0 .

�

Lemma A.3 (Step 3). Let B(Ωr̂) be a basis of HΓ1,r̂ ,Γ2(Ωr̂) and let B1(Ω) be defined as above. It holds

HΓ1,Γ2(Ω) ∩B1(Ω)
⊥ = {0} .
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Proof. Let H ∈ HΓ1,Γ2(Ω) ∩B1(Ω)
⊥. Then, for all B ∈ B(Ωr̂) we have by definition of B1(Ω)

〈RΩr̂
(H) , B 〉

L2(Ωr̂)
= 〈H ,EΩ(B) 〉

L2(Ω)
= 0 ,

and hence by (A.2)

RΩr̂
(H) ∈ 0DΓ2

(Ωr̂) ∩ HΓ1,r̂ ,Γ2(Ωr̂)
⊥ = rotRΓ2

(Ωr̂) .

The assertion (H = 0 ) now follows by continuing as in the latter proof after (A.3). �
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