Lightweight Generator of Synthetic IMU Sensor Data for Accurate AHRS Analysis

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

Accurate orientation estimation is crucial in many application areas, including unmanned ground and aerial navigation for industrial automation and human motion tracking for human-robot interaction. State-of-the-art techniques leverage Inertial Measurement Units (IMU) due to their small size, low energy footprint, and ever-increasing accuracy, which provide Magnetic, Angular Rate, and Gravity (MARG) sensor measurements. Available attitude determination techniques rely on advanced signal processing algorithms to compensate for the gyroscope integration drift. The comparison of different algorithms depends solely on the collected ground-truth data set, which is difficult to replicate. This paper introduces a lightweight software framework to generate synthetic IMU sensor data. We generate the ground-truth orientation of the sensor body frame and apply an inverse navigation process to obtain corresponding synthetic sensor data. Additionally, we compare two well-known orientation estimation algorithms applied to the synthetically generated data from our framework. Evaluation results demonstrate that the proposed software framework represents a fast and easy-to-use solution to the problem of evaluation of different orientation estimation algorithms while providing access to ground truth measurements.

Details

OriginalspracheEnglisch
Titel2023 IEEE International Conference on Advanced Robotics and Its Social Impacts, ARSO 2023
Herausgeber (Verlag)IEEE Computer Society
Seiten122-127
Seitenumfang6
ISBN (elektronisch)978-1-6654-6424-6
PublikationsstatusVeröffentlicht - 2023
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE Workshop on Advanced Robotics and its Social Impacts, ARSO
Band2023-June
ISSN2162-7568

Konferenz

Titel2023 IEEE International Conference on Advanced Robotics and Its Social Impacts, ARSO 2023
Dauer5 - 7 Juni 2023
StadtBerlin
LandDeutschland

Externe IDs

ORCID /0000-0001-7008-1537/work/158767462
ORCID /0000-0001-8469-9573/work/161891153
ORCID /0009-0000-2028-3237/work/170107582

Schlagworte

Schlagwörter

  • AHRS evaluation, data generation, IMU, MARG, sensor fusion, synthetic sensor data