Large language models streamline automated machine learning for clinical studies

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Soroosh Tayebi Arasteh - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Tianyu Han - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Mahshad Lotfinia - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Christiane Kuhl - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Jakob Nikolas Kather - , Else Kröner Fresenius Zentrum für Digitale Gesundheit, Universität Heidelberg (Autor:in)
  • Daniel Truhn - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Sven Nebelung - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)

Abstract

A knowledge gap persists between machine learning (ML) developers (e.g., data scientists) and practitioners (e.g., clinicians), hampering the full utilization of ML for clinical data analysis. We investigated the potential of the ChatGPT Advanced Data Analysis (ADA), an extension of GPT-4, to bridge this gap and perform ML analyses efficiently. Real-world clinical datasets and study details from large trials across various medical specialties were presented to ChatGPT ADA without specific guidance. ChatGPT ADA autonomously developed state-of-the-art ML models based on the original study’s training data to predict clinical outcomes such as cancer development, cancer progression, disease complications, or biomarkers such as pathogenic gene sequences. Following the re-implementation and optimization of the published models, the head-to-head comparison of the ChatGPT ADA-crafted ML models and their respective manually crafted counterparts revealed no significant differences in traditional performance metrics (p ≥ 0.072). Strikingly, the ChatGPT ADA-crafted ML models often outperformed their counterparts. In conclusion, ChatGPT ADA offers a promising avenue to democratize ML in medicine by simplifying complex data analyses, yet should enhance, not replace, specialized training and resources, to promote broader applications in medical research and practice.

Details

OriginalspracheEnglisch
Aufsatznummer1603
FachzeitschriftNature communications
Jahrgang15
Ausgabenummer1
Frühes Online-Datum21 Feb. 2024
PublikationsstatusVeröffentlicht - Dez. 2024
Peer-Review-StatusJa

Externe IDs

PubMed 38383555

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Algorithms, Language, Humans, Benchmarking, Machine Learning, Neoplasms