Kidney edge detection in laparoscopic image data for computer-assisted surgery: Kidney edge detection

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Georges Hattab - , Nationales Zentrum für Tumorerkrankungen (NCT) Dresden (Autor:in)
  • Marvin Arnold - , Nationales Zentrum für Tumorerkrankungen (NCT) Dresden (Autor:in)
  • Leon Strenger - , Nationales Zentrum für Tumorerkrankungen (NCT) Dresden (Autor:in)
  • Max Allan - , Intuitive Surgical (Autor:in)
  • Darja Arsentjeva - , Nationales Zentrum für Tumorerkrankungen (NCT) Dresden (Autor:in)
  • Oliver Gold - , Nationales Zentrum für Tumorerkrankungen (NCT) Dresden (Autor:in)
  • Tobias Simpfendörfer - , Universität Heidelberg (Autor:in)
  • Lena Maier-Hein - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Stefanie Speidel - , Nationales Centrum für Tumorerkrankungen Dresden (Autor:in)

Abstract

Purpose: In robotic-assisted kidney surgery, computational methods make it possible to augment the surgical scene and potentially improve patient outcome. Most often, soft-tissue registration is a prerequisite for the visualization of tumors and vascular structures hidden beneath the surface. State-of-the-art volume-to-surface registration methods, however, are computationally demanding and require a sufficiently large target surface. To overcome this limitation, the first step toward registration is the extraction of the outer edge of the kidney. Methods: To tackle this task, we propose a deep learning-based solution. Rather than working only on the raw laparoscopic images, the network is given depth information and distance fields to predict whether a pixel of the image belongs to an edge. We evaluate our method on expert-labeled in vivo data from the EndoVis sub-challenge 2017 Kidney Boundary Detection and define the current state of the art. Results: By using a leave-one-out cross-validation, we report results for the most suitable network with a median precision-like, recall-like, and intersection over union (IOU) of 39.5 px, 143.3 px, and 0.3, respectively. Conclusion: We conclude that our approach succeeds in predicting the edges of the kidney, except in instances where high occlusion occurs, which explains the average decrease in the IOU score. All source code, reference data, models, and evaluation results are openly available for download: https://github.com/ghattab/kidney-edge-detection/.

Details

OriginalspracheEnglisch
Seiten (von - bis)379-387
Seitenumfang9
FachzeitschriftInternational journal of computer assisted radiology and surgery
Jahrgang15
Ausgabenummer3
PublikationsstatusVeröffentlicht - 1 März 2020
Peer-Review-StatusJa

Externe IDs

PubMed 31828502
ORCID /0000-0002-4590-1908/work/163294068