Joint Multi-task Learning Improves Weakly-Supervised Biomarker Prediction in Computational Pathology
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Deep Learning (DL) can predict biomarkers directly from digitized cancer histology in a weakly-supervised setting. Recently, the prediction of continuous biomarkers through regression-based DL has seen an increasing interest. Nonetheless, clinical decision making often requires a categorical outcome. Consequently, we developed a weakly-supervised joint multi-task Transformer architecture which has been trained and evaluated on four public patient cohorts for the prediction of two key predictive biomarkers, microsatellite instability (MSI) and homologous recombination deficiency (HRD), trained with auxiliary regression tasks related to the tumor microenvironment. Moreover, we perform a comprehensive benchmark of 16 task balancing approaches for weakly-supervised joint multi-task learning in computational pathology. Using our novel approach, we outperform the state of the art by +7.7% and +4.1% as measured by the area under the receiver operating characteristic, and enhance clustering of latent embeddings by +8% and +5%, for the prediction of MSI and HRD in external cohorts, respectively.
Details
Originalsprache | Englisch |
---|---|
Titel | Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 - 27th International Conference, Proceedings |
Redakteure/-innen | Marius George Linguraru, Qi Dou, Aasa Feragen, Stamatia Giannarou, Ben Glocker, Karim Lekadir, Julia A. Schnabel |
Herausgeber (Verlag) | Springer Science and Business Media B.V. |
Seiten | 254-262 |
Seitenumfang | 9 |
ISBN (Print) | 9783031720826 |
Publikationsstatus | Veröffentlicht - 2024 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Band | 15004 LNCS |
ISSN | 0302-9743 |
Konferenz
Titel | 27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024 |
---|---|
Dauer | 6 - 10 Oktober 2024 |
Stadt | Marrakesh |
Land | Marokko |
Schlagworte
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- Joint-learning, Multi-task, Pathology, Weakly-supervised