ISWI catalyzes nucleosome sliding in condensed nucleosome arrays

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Petra Vizjak - , Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München (LMU) (Erstautor:in)
  • Dieter Kamp - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Nicola Hepp - , Copenhagen University Hospitals, Institut für Physiologische Chemie (Autor:in)
  • Alessandro Scacchetti - , University of Pennsylvania Perelman School of Medicine (Autor:in)
  • Mariano Gonzalez Pisfil - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Joseph Bartho - , European Molecular Biology Laboratory (EMBL) Heidelberg (Autor:in)
  • Mario Halic - , St. Jude Children Research Hospital (Autor:in)
  • Peter B Becker - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Michaela Smolle - , ViraTherapeutics GmbH (Autor:in)
  • Johannes Stigler - , Ludwig-Maximilians-Universität München (LMU) (Gemeinsame:r Letztautor:in)
  • Felix Mueller-Planitz - , Institut für Physiologische Chemie (Gemeinsame:r Letztautor:in)

Abstract

How chromatin enzymes work in condensed chromatin and how they maintain diffusional mobility inside remains unexplored. Here we investigated these challenges using the Drosophila ISWI remodeling ATPase, which slides nucleosomes along DNA. Folding of chromatin fibers did not affect sliding in vitro. Catalytic rates were also comparable in- and outside of chromatin condensates. ISWI cross-links and thereby stiffens condensates, except when ATP hydrolysis is possible. Active hydrolysis is also required for ISWI's mobility in condensates. Energy from ATP hydrolysis therefore fuels ISWI's diffusion through chromatin and prevents ISWI from cross-linking chromatin. Molecular dynamics simulations of a 'monkey-bar' model in which ISWI grabs onto neighboring nucleosomes, then withdraws from one before rebinding another in an ATP hydrolysis-dependent manner, qualitatively agree with our data. We speculate that monkey-bar mechanisms could be shared with other chromatin factors and that changes in chromatin dynamics caused by mutations in remodelers could contribute to pathologies.

Details

OriginalspracheEnglisch
Seiten (von - bis)1331-1340
Seitenumfang10
FachzeitschriftNature structural & molecular biology
Jahrgang31
Ausgabenummer9
PublikationsstatusVeröffentlicht - Sept. 2024
Peer-Review-StatusJa

Externe IDs

Scopus 85191496096

Schlagworte

Schlagwörter

  • Nucleosomes/metabolism, Animals, Adenosine Triphosphatases/metabolism, Molecular Dynamics Simulation, Transcription Factors/metabolism, Chromatin Assembly and Disassembly, Adenosine Triphosphate/metabolism, Drosophila melanogaster/metabolism, Hydrolysis, Drosophila Proteins/metabolism, DNA/metabolism, Chromatin/metabolism, Drosophila/metabolism