Injectable Glycosaminoglycan-Based Cryogels from Well-Defined Microscale Templates for Local Growth Factor Delivery

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Ben Newland - , Leibniz-Institut für Polymerforschung Dresden, Cardiff University (Autor:in)
  • Heike Newland - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Francesca Lorenzi - , Leibniz-Institut für Polymerforschung Dresden, Università degli studi di Padova (Autor:in)
  • Dimitri Eigel - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Petra B. Welzel - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Dieter Fischer - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Wenxin Wang - , University College Dublin (Autor:in)
  • Uwe Freudenberg - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Anne Rosser - , Cardiff University (Autor:in)
  • Carsten Werner - , Professur für Biofunktionale Polymermaterialien (gB/IPF), Leibniz-Institut für Polymerforschung Dresden (Autor:in)

Abstract

Glycosaminoglycan-based hydrogels hold great potential for applications in tissue engineering and regenerative medicine. By mimicking the natural extracellular matrix processes of growth factor binding and release, such hydrogels can be used as a sustained delivery device for growth factors. Since neural networks commonly follow well-defined, high-aspect-ratio paths through the central and peripheral nervous system, we sought to create a fiber-like, elongated growth factor delivery system. Cryogels, with networks formed at subzero temperatures, are well-suited for the creation of high-aspect-ratio biomaterials, because they have a macroporous structure making them mechanically robust (for ease of handling) yet soft and highly compressible (for interfacing with brain tissue). Unlike hydrogels, cryogels can be synthesized in advance of their use, stored with ease, and rehydrated quickly to their original shape. Herein, we use solvent-assisted microcontact molding to form sacrificial templates, in which we produced highly porous cryogel microscale scaffolds with a well-defined elongated shape via the photopolymerization of poly(ethylene glycol) diacrylate and maleimide-functionalized heparin. Dissolution of the template yielded cryogels that could load nerve growth factor (NGF) and release it over a period of 2 weeks, causing neurite outgrowth in PC12 cell cultures. This microscale template-assisted synthesis technique allows tight control over the cryogel scaffold dimensions for high reproducibility and ease of injection through fine gauge needles.

Details

OriginalspracheEnglisch
Seiten (von - bis)1178-1188
Seitenumfang11
FachzeitschriftACS chemical neuroscience
Jahrgang12
Ausgabenummer7
PublikationsstatusVeröffentlicht - 7 Apr. 2021
Peer-Review-StatusJa

Externe IDs

PubMed 33754692
ORCID /0000-0003-0189-3448/work/161890281

Schlagworte

Schlagwörter

  • cryogel scaffold, Heparin, nerve growth factor, PC12 cells, photopolymerization, sustained delivery