Information Inference Diagrams: Complementing Privacy and Security Analyses Beyond Data Flows

Publikation: Beitrag zu KonferenzenPaperBeigetragenBegutachtung

Beitragende

Abstract

This work introduces Information Inference Diagrams (I2Ds), a modeling framework aiming to complement existing approaches for privacy and security analysis of distributed systems. It is intended to support established threat modeling processes. Our approach is designed to be compatible with Data Flow Diagrams (DFDs), which form the basis of many established techniques and tools. Unlike DFDs, I2Ds represent information propagation, going beyond mere data flows to enable more formal reasoning in threat modeling while remaining practical. They define inference and sharing (flow) relations on information items to model how information moves through a system. To this end, we provide formal definitions for information items, entities, and flows. By introducing classes as a type system, our formal rules are both generic and allow conformance to existing vocabularies. We demonstrate the applicability of I2Ds through examples, that showcase their versatility in system analysis.

Details

OriginalspracheEnglisch
Seiten202-220
Seitenumfang19
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Konferenz

Titel13th Annual Privacy Forum
KurztitelAPF 2025
Veranstaltungsnummer13
Dauer22 - 23 Oktober 2025
Webseite
OrtJohann Wolfgang Goethe-Universität Frankfurt am Main & Online
StadtFrankfurt am Main
LandDeutschland

Externe IDs

Scopus 105020263422
ORCID /0000-0002-0466-562X/work/198593137

Schlagworte