Impact of Interfacial SiO2 Layer Thickness on the Electrical Performance of SiO2/High-k Stacks on 4H-SiC

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in Buch/Sammelband/GutachtenBeigetragenBegutachtung

Beitragende

  • Sandra Krause - , Professur für Nanoelektronik (Autor:in)
  • Aleksey Mikhaylov - , Infineon Technologies AG (Autor:in)
  • Uwe Schroeder - , NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)
  • Thomas Mikolajick - , Professur für Nanoelektronik, NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)
  • Andre Wachowiak - , NaMLab - Nanoelectronic materials laboratory gGmbH (Autor:in)

Abstract

This study investigates the role of the electrical failure of the SiO2 film in the breakdown of SiO2/ZrO2 and SiO2/HfO2 stacks. Our findings indicate that the breakdown is governed by the SiO2 film, regardless of its thickness. This highlights the importance of carefully considering the interfacial SiO2 layer when using high-k materials in SiC devices. We demonstrate that thicker SiO2 layers offer several benefits, including reduced leakage, enhanced thermal stability and electrical strength, and decreased trapping. In contrast, stacks with thinner SiO2 have a higher effective k value, exploiting the benefits of high-k dielectrics. Our experimental results suggest that a 7 nm SiO2 layer underlying 30 nm crystalline ZrO2 or HfO2 provides optimal performance. Furthermore, we present calculations that reveal the trade-off between SiO2 thickness, k value, and breakdown voltage for a 50 nm thick dielectric stack. Our results imply that a k value exceeding 20 does not yield significant benefits in 50 nm thick SiO2/dielectric stacks.

Details

OriginalspracheEnglisch
TitelProcesses in Devices Fabrication
Herausgeber (Verlag)Trans Tech Publications Ltd
Seiten17-25
Seitenumfang9
ISBN (elektronisch)978-3-0364-1911-4
ISBN (Print)978-3-0364-0911-5
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Publikationsreihe

ReiheMaterials Science Forum
Band1158
ISSN0255-5476

Externe IDs

ORCID /0000-0003-3814-0378/work/194824203

Schlagworte

Schlagwörter

  • breakdown field, CV hysteresis, dielectric constant, dielectric stack, flatband voltage, high-k, interfacial oxide, leakage current, silicon carbide, SiO interlayer, temperature-dependent IV