“Impact of hydride composite materials on thermochemical hydrogen compression”

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Marius Lau - , Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (Autor:in)
  • Oliver Ehrensberger - , Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Technische Universität Dresden, MUT Advanced Heating GmbH (Autor:in)
  • Thomas Weißgärber - , Professur für Pulvermetallurgie (g.B. IFAM), Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Technische Universität Dresden (Autor:in)
  • Felix Heubner - , Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (Autor:in)

Abstract

The formation of a hydride from a metal or intermetallic alloy is an exothermic reversible chemical reaction. The thermodynamic properties governing hydride formation facilitate their thermochemical applications, such as hydrogen compression. Thermal transport inside the materials is of highest importance for system dynamics and its productivity. In this contribution, we demonstrate a two-stage thermochemical hydrogen compressor using the AB5 alloy LaNi5 in the first stage and an AB2 alloy TiMn2 (Hydralloy®) in the second stage. To evaluate the impact of the thermal conductivity of the materials, the productivity of the compressor was compared for pure metal hydride compacts (MH) and metal hydride composite materials (MHC). Compared to pure MH pellets, the MHC used in this study contain expanded natural graphite (ENG), a secondary phase with highest thermal conductivity. As the radial thermal conductivity of the MHC increased, the time required for the loading, temperature change and unloading steps was successfully reduced by 400%. Productivity was increased by over 320 % from 14 NlH2/(kgMaterial*h) to 44 NlH2/(kgMaterial*h). Overall, MHC have the potential to simplify handling, reactor design and reduce investment costs for thermochemical compression systems. Thus, MHC have highest impact and potential for thermochemical applications.

Details

OriginalspracheEnglisch
Seiten (von - bis)562-570
Seitenumfang9
FachzeitschriftInternational journal of hydrogen energy
Jahrgang71
PublikationsstatusVeröffentlicht - 19 Juni 2024
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • Hydralloy, LaNi, Metal hydride composite, Thermochemical hydrogen compression, TiMn