Hardware Acceleration of EEG-based Emotion Classification Systems: A Comprehensive Survey

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

Abstract

Recent years have witnessed a growing interest in EEG-based wearable classifiers of emotions, which could enable the real-Time monitoring of patients suffering from neurological disorders such as Amyotrophic Lateral Sclerosis (ALS), Autism Spectrum Disorder (ASD), or Alzheimer's. The hope is that such wearable emotion classifiers would facilitate the patients' social integration and lead to improved healthcare outcomes for them and their loved ones. Yet in spite of their direct relevance to neuro-medicine, the hardware platforms for emotion classification have yet to fill up some important gaps in their various approaches to emotion classification in a healthcare context. In this paper, we present the first hardware-focused critical review of EEG-based wearable classifiers of emotions and survey their implementation perspectives, their algorithmic foundations, and their feature extraction methodologies. We further provide a neuroscience-based analysis of current hardware accelerators of emotion classifiers and use it to map out several research opportunities, including multi-modal hardware platforms, accelerators with tightly-coupled cores operating robustly in the near/supra-Threshold region, and pre-processing libraries for universal EEG-based datasets.

Details

OriginalspracheEnglisch
Aufsatznummer9454320
Seiten (von - bis)412-442
Seitenumfang31
FachzeitschriftIEEE transactions on biomedical circuits and systems
Jahrgang15
Ausgabenummer3
PublikationsstatusVeröffentlicht - Juni 2021
Peer-Review-StatusJa

Externe IDs

Scopus 85112653711
ORCID /0000-0001-8469-9573/work/161891050

Schlagworte