Glassy Dynamics and Glass Transition in Nanometric Thin Layers of Polystyrene

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Martin Tress - , Universitätsklinikum Leipzig (Autor:in)
  • Michael Erber - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Emmanuel U. Mapesa - , Universitätsklinikum Leipzig (Autor:in)
  • Heiko Huth - , Universität Rostock (Autor:in)
  • Jan Mueller - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Anatoli Serghei - , University of Massachusetts Amherst (Autor:in)
  • Christoph Schick - , Universität Rostock (Autor:in)
  • Klaus-Jochen Eichhorn - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Friedrich Kremer - , Universitätsklinikum Leipzig (Autor:in)
  • Brigitte Voit - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)

Abstract

Broadband dielectric spectroscopy (BDS), spectroscopic vis-ellipsometry (SE), X-ray reflectometry (XRR), and alternating current (ACC) as well as differential scanning calorimetry (DSC) are combined to study glassy dynamics and the glass transition in nanometric thin (>= 5 nm) layers of polystyrene (PS) having widely varying molecular weights (27 500-8 090 000 g/mol). For the dielectric measurements two sample geometries are employed, the common technique using evaporated electrodes and a recently developed approach taking advantage of nanostructures as spacers. All applied methods deliver the concurring result that deviations from glassy dynamics and from the glass transition of the bulk do not exceed margins of +/- 3 K independent of the layer thickness and the molecular weight of the polymer under study. Our findings are discussed in the context of the highly controversial literature and prove that an appropriate sample preparation is of paramount importance.

Details

OriginalspracheEnglisch
Seiten (von - bis)9937-9944
Seitenumfang8
FachzeitschriftMacromolecules
Jahrgang43
Ausgabenummer23
PublikationsstatusVeröffentlicht - 14 Dez. 2010
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

Scopus 78651337962
ORCID /0000-0002-4531-691X/work/148607824

Schlagworte

Schlagwörter

  • Ultrathin polymer-films, Ac-chip calorimeter, Molecular-weight, Temperature-dependence, Surface, Relaxation, Interface, Viscosity, Solvent, Liquid