Giant quantum oscillations in thermal transport in low-density metals via electron absorption of phonons

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Baptiste Bermond - , Laboratoire de Physique de l'ENS de Lyon (LPENS) (Autor:in)
  • Rafał Wawrzyńczak - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Sergei Zherlitsyn - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Tommy Kotte - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Toni Helm - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Denis Gorbunov - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Genda Gu - , Brookhaven National Laboratory, Stony Brook University (Autor:in)
  • Qiang Li - , Stony Brook University (Autor:in)
  • Filip Janasz - , University of Luxembourg (Autor:in)
  • Tobias Meng - , Exzellenzcluster ctd.qmat: Complexity, Topology and Dynamics in Quantum Matter, Professur für Theoretische Festkörperphysik (Autor:in)
  • Fabian Menges - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Claudia Felser - , Max-Planck-Institut für Chemische Physik fester Stoffe (Autor:in)
  • Joachim Wosnitza - , Exzellenzcluster ctd.qmat: Complexity, Topology and Dynamics in Quantum Matter, Professur für Physik in hohen Magnetfeldern (gB/HZDR), Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Autor:in)
  • Adolfo Grushin - , Université Grenoble Alpes (Autor:in)
  • David Carpentier - , Laboratoire de Physique de l'ENS de Lyon (LPENS) (Autor:in)
  • Johannes Gooth - , Max-Planck-Institut für Chemische Physik fester Stoffe, Universität Bonn (Autor:in)
  • Stanisław Gałeski - , Max-Planck-Institut für Chemische Physik fester Stoffe, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Universität Bonn (Autor:in)

Abstract

Oscillations of conductance observed in strong magnetic fields are a striking manifestation of the quantum dynamics of charge carriers in solids. The large charge carrier density in typical metals sets the scale of oscillations in both electrical and thermal conductivity, which characterize the Fermi surface. In semimetals, thermal transport at low-charge carrier density is expected to be phonon dominated, yet several experiments observe giant quantum oscillations in thermal transport. This raises the question of whether there is an overarching mechanism leading to sizable oscillations that survives in phonon-dominated semimetals. In this work, we show that such a mechanism exists. It relies on the peculiar phase-space allowed for phonon scattering by electrons when only a few Landau levels are filled. Our measurements on the Dirac semimetal ZrTe5 support this counterintuitive mechanism through observation of pronounced thermal quantum oscillations, since they occur in similar magnitude and phase in directions parallel and transverse to the magnetic field. Our phase-space argument applies to all low-density semimetals, topological or not, including graphene and bismuth. Our work illustrates that phonon absorption can be leveraged to reveal degrees of freedom through their imprint on longitudinal thermal transport.

Details

OriginalspracheEnglisch
Aufsatznummere2408546122
Seitenumfang8
FachzeitschriftProceedings of the National Academy of Sciences of the United States of America
Jahrgang122
Ausgabenummer10
PublikationsstatusVeröffentlicht - 11 März 2025
Peer-Review-StatusJa

Externe IDs

PubMed 40042911

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Dirac semimetal, Landau levels, quantum limit, thermal transport, Wiedemann–Franz law