Generalized Data Placement Strategies for Racetrack Memories

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Ultra-dense non-volatile racetrack memories (RTMs) have been investigated at various levels in the memory hierarchy for improved performance and reduced energy consumption. However, the innate shift operations in RTMs hinder their applicability to replace low-latency on-chip memories. Recent research has demonstrated that intelligent placement of memory objects in RTMs can significantly reduce the amount of shifts with no hardware overhead, albeit for specific system setups. However, existing placement strategies may lead to sub-optimal performance when applied to different architectures. In this paper we look at generalized data placement mechanisms that improve upon existing ones by taking into account the underlying memory architecture and the timing and liveliness information of memory objects. We propose a novel heuristic and a formulation using genetic algorithms that optimize key performance parameters. We show that, on average, our generalized approach improves the number of shifts, performance and energy consumption by 4.3 ×, 46% and 55% respectively compared to the state-of-the-art.

Details

OriginalspracheEnglisch
Titel2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)
Redakteure/-innenGiorgio Di Natale, Cristiana Bolchini, Elena-Ioana Vatajelu
Herausgeber (Verlag)IEEE, New York [u. a.]
Seiten1502-1507
Seitenumfang6
ISBN (elektronisch)978-3-9819263-4-7
ISBN (Print)78-1-7281-4468-9
PublikationsstatusVeröffentlicht - März 2020
Peer-Review-StatusJa

Publikationsreihe

ReiheDesign, Automation and Test in Europe Conference and Exhibition (DATE)
ISSN1530-1591

Konferenz

Titel2020 Design, Automation and Test in Europe Conference and Exhibition, DATE 2020
Dauer9 - 13 März 2020
StadtGrenoble
LandFrankreich

Externe IDs

ORCID /0000-0002-5007-445X/work/141545528

Schlagworte

Forschungsprofillinien der TU Dresden

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Data placement, domain wall memory, racetrack memory, shift operations