Fuzzy logic-based approach for the uncertainty modelling in cementitious materials
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Buch/Sammelband/Gutachten › Beigetragen › Begutachtung
Beitragende
Abstract
Refined physics-based models generally present a relevant number of parameters to calibrate against experimental data, which might be unavailable for the mixture or the service scenario of interest. This represents one of the most relevant issues in material modelling, especially when descriptive models are adapted to serve as predictive ones. Additionally, accurate small-scale models are particularly suitable for simulating laboratory tests. The up-scaling to structural members, or even entire structures, requires the identification of bridging parameters, responsible for bringing the small-scale models’ accuracy into the engineering models adopted for the long-term prediction at the structural level. This paper presents a methodological approach to deal with the uncertainty featuring the models calibration in case of limited experimental data. In addition, a strategy of up-scaling, relying on the fuzzy logical approach is presented. The activity performed is framed into the Horizon 2020 project ReSHEALience [1].
Details
Originalsprache | Englisch |
---|---|
Titel | RILEM Bookseries |
Herausgeber (Verlag) | Springer Science and Business Media B.V. |
Seiten | 197-206 |
Seitenumfang | 10 |
Publikationsstatus | Veröffentlicht - 2023 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | RILEM Bookseries |
---|---|
Band | 38 |
ISSN | 2211-0844 |
Externe IDs
unpaywall | 10.1007/978-3-031-07746-3_20 |
---|
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis
ASJC Scopus Sachgebiete
Schlagwörter
- Cementitious materials, Fibre reinforced concrete, Fuzzy logic, Hygro-thermo-chemical model, Lattice discrete particle model, Material modelling, ONIX, Uncertainty modelling