Full-Stack Optimization for CAM-Only DNN Inference
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
The accuracy of neural networks has greatly improved across various domains over the past years. Their ever-increasing complexity, however, leads to prohibitively high energy demands and latency in von-Neumann systems. Several computing-in-memory (CIM) systems have recently been proposed to overcome this, but trade-offs involving accuracy, hardware reliability, and scalability for large models remain a challenge. Additionally, for some CIM designs, the activation movement still requires considerable time and energy. This paper explores the combination of algorithmic optimizations for ternary weight neural networks and associative processors (APs) implemented using racetrack memory (RTM). We propose a novel compilation flow to optimize convolutions on APs by reducing their arithmetic intensity. By leveraging the benefits of RTM-based APs, this approach substantially reduces data transfers within the memory while addressing accuracy, energy efficiency, and reliability concerns. Concretely, our solution improves the energy efficiency of ResNet-18 inference on ImageNet by 7.5× compared to crossbar in-memory accelerators while retaining software accuracy.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | 2024 Design, Automation and Test in Europe Conference and Exhibition, DATE 2024 - Proceedings |
| Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers (IEEE) |
| ISBN (elektronisch) | 9798350348590 |
| Publikationsstatus | Veröffentlicht - 2024 |
| Peer-Review-Status | Ja |
Publikationsreihe
| Reihe | Proceedings -Design, Automation and Test in Europe, DATE |
|---|---|
| ISSN | 1530-1591 |
Konferenz
| Titel | 2024 Design, Automation and Test in Europe Conference and Exhibition |
|---|---|
| Kurztitel | DATE 2024 |
| Veranstaltungsnummer | 27 |
| Dauer | 25 - 27 März 2024 |
| Webseite | |
| Ort | Palacio De Congresos De Valencia |
| Stadt | Valencia |
| Land | Spanien |
Externe IDs
| ORCID | /0000-0002-5007-445X/work/173985262 |
|---|---|
| ORCID | /0000-0001-9295-3519/work/191041737 |
Schlagworte
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- Associative memory, compiler optimizations, neu-ral network, racetrack memories