Full-Stack Optimization for CAM-Only DNN Inference

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

The accuracy of neural networks has greatly improved across various domains over the past years. Their ever-increasing complexity, however, leads to prohibitively high energy demands and latency in von-Neumann systems. Several computing-in-memory (CIM) systems have recently been proposed to overcome this, but trade-offs involving accuracy, hardware reliability, and scalability for large models remain a challenge. Additionally, for some CIM designs, the activation movement still requires considerable time and energy. This paper explores the combination of algorithmic optimizations for ternary weight neural networks and associative processors (APs) implemented using racetrack memory (RTM). We propose a novel compilation flow to optimize convolutions on APs by reducing their arithmetic intensity. By leveraging the benefits of RTM-based APs, this approach substantially reduces data transfers within the memory while addressing accuracy, energy efficiency, and reliability concerns. Concretely, our solution improves the energy efficiency of ResNet-18 inference on ImageNet by 7.5× compared to crossbar in-memory accelerators while retaining software accuracy.

Details

OriginalspracheEnglisch
Titel2024 Design, Automation and Test in Europe Conference and Exhibition, DATE 2024 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
ISBN (elektronisch)9798350348590
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Publikationsreihe

ReiheProceedings -Design, Automation and Test in Europe, DATE
ISSN1530-1591

Konferenz

Titel2024 Design, Automation and Test in Europe Conference and Exhibition
KurztitelDATE 2024
Veranstaltungsnummer27
Dauer25 - 27 März 2024
Webseite
OrtPalacio De Congresos De Valencia
StadtValencia
LandSpanien

Externe IDs

ORCID /0000-0002-5007-445X/work/173985262
ORCID /0000-0001-9295-3519/work/191041737

Schlagworte

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete

Schlagwörter

  • Associative memory, compiler optimizations, neu-ral network, racetrack memories