First Steps in Concept Drift Management for Resilient Wireless Networks

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Performance degradation in machine learning models can lead to significant losses in production environments, especially in communication systems. Concept drift, a phenomenon where the statistical properties of the target variable change over time, poses a critical challenge, making even initially effective models perform poorly in the long run. This paper compares various packet drop detection models to evaluate their resilience against concept drift. We also assess the performance of these models after applying drift reduction mechanisms to determine their effectiveness in maintaining robust performance over extended periods.

Details

OriginalspracheEnglisch
TitelEuropean Wireless 2024, EW 2024
Herausgeber (Verlag)VDE Verlag, Berlin [u. a.]
Seiten85-90
Seitenumfang6
ISBN (elektronisch)9783800764969
PublikationsstatusVeröffentlicht - 2024
Peer-Review-StatusJa

Konferenz

Titel29th European Wireless Conference
UntertitelShaping the Future of Connectivity
KurztitelEW 2024
Veranstaltungsnummer29
Dauer9 - 11 September 2024
Webseite
OrtBrno University of Technology
StadtBrno
LandTschechische Republik

Externe IDs

ORCID /0000-0001-8469-9573/work/189706558
ORCID /0000-0001-7008-1537/work/189707744

Schlagworte

Schlagwörter

  • Concept drift, Machine learning, Mesh Network