First Steps in Concept Drift Management for Resilient Wireless Networks
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Performance degradation in machine learning models can lead to significant losses in production environments, especially in communication systems. Concept drift, a phenomenon where the statistical properties of the target variable change over time, poses a critical challenge, making even initially effective models perform poorly in the long run. This paper compares various packet drop detection models to evaluate their resilience against concept drift. We also assess the performance of these models after applying drift reduction mechanisms to determine their effectiveness in maintaining robust performance over extended periods.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | European Wireless 2024, EW 2024 |
| Herausgeber (Verlag) | VDE Verlag, Berlin [u. a.] |
| Seiten | 85-90 |
| Seitenumfang | 6 |
| ISBN (elektronisch) | 9783800764969 |
| Publikationsstatus | Veröffentlicht - 2024 |
| Peer-Review-Status | Ja |
Konferenz
| Titel | 29th European Wireless Conference |
|---|---|
| Untertitel | Shaping the Future of Connectivity |
| Kurztitel | EW 2024 |
| Veranstaltungsnummer | 29 |
| Dauer | 9 - 11 September 2024 |
| Webseite | |
| Ort | Brno University of Technology |
| Stadt | Brno |
| Land | Tschechische Republik |
Externe IDs
| ORCID | /0000-0001-8469-9573/work/189706558 |
|---|---|
| ORCID | /0000-0001-7008-1537/work/189707744 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Concept drift, Machine learning, Mesh Network