Fibronectin fibril pattern displays the force balance of cell-matrix adhesion

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Tilo Pompe - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Kristin Keller - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Claudia Mitdank - , Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Carsten Werner - , Professur für Biofunktionale Polymermaterialien (gB/IPF), Leibniz-Institut für Polymerforschung Dresden (Autor:in)
  • Max Bergmann Zentrum für Biomaterialien Dresden (MBZ)

Abstract

Formation of fibrillar patterns of fibronectin on polymer substrates with gradated physicochemical surface properties was analysed during early stages of endothelial cell adhesion. Fibronectin was pre-adsorbed onto three maleic anhydride copolymer thin films with distinct differences in the protein adsorption strength as verified by heteroexchange experiments. The evolved micrometer scale fibrillar patterns of fibronectin on the compared polymer surfaces were characterized after 50 min of cellular reorganization by an auto-correlation analysis using fluorescence microscopy data. Statistical analysis revealed a decrease of the typical spacings of the fibronectin fibrils from 2.6 to 1.8 mum with decreasing fibronectin adsorption strength to the substrate. Size and density of focal adhesions correlated with this dependence of the fibronectin fibril pattern. From these data a model was developed relating the fibronectin fibril pattern to the fibronectin-substrate adsorption strength through the cytoskeletal force regulation mechanism of the cell.

Details

OriginalspracheEnglisch
Seiten (von - bis)1049-56
Seitenumfang8
FachzeitschriftEuropean biophysics journal : with biophysics letters
Jahrgang34
Ausgabenummer8
PublikationsstatusVeröffentlicht - Nov. 2005
Peer-Review-StatusJa

Externe IDs

Scopus 27744560439
ORCID /0000-0003-0189-3448/work/173985712

Schlagworte

Schlagwörter

  • Adhesiveness, Binding Sites, Cell Adhesion/physiology, Cells, Cultured, Computer Simulation, Endothelial Cells/physiology, Extracellular Matrix/physiology, Fibronectins/metabolism, Humans, Image Interpretation, Computer-Assisted, Models, Biological, Protein Binding, Protein Conformation, Stress, Mechanical