FAIRness Along the Machine Learning Lifecycle Using Dataverse in Combination with MLflow

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Abstract

Typical Machine Learning (ML) approaches are characterized by their iterative and exploratory nature: continuously refining and adapting not only code but also ML models to optimize the results and the performance on new data. This poses novel challenges related to keeping the trained model Findable, Accessible, Interoperable and Reusable (FAIR), especially for the automation of the entire machine learning lifecycle within the concept of Machine Learning Operations (MLOps). The article introduces a comprehensive integration of a data repository (based on the software Dataverse) and an ML platform (based on the MLflow framework) that enables seamless sharing and publishing of data, experiments and models, ensuring FAIRness. The presented solution is evaluated using an ML use case scenario with model training, hyper-parameter optimization, and model sharing via the data platform.

Details

OriginalspracheEnglisch
Aufsatznummer55
FachzeitschriftData Science Journal
Jahrgang23
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 Dez. 2024
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0001-8719-5741/work/173516468
unpaywall 10.5334/dsj-2024-055
Scopus 85212217613

Schlagworte

Schlagwörter

  • FAIR data, FAIR principles, Machine Learning, research data management, Competing Interests, Database management system, FAIR Data, FAIR data principles, Machine Learning (ML), Research data management