Extrusion-based additive manufacturing with carbon reinforced concrete: Concept and feasibility study
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
Additive manufacturing with cement-based materials needs sound approaches for the direct, seamless integration of reinforcement into structural and non-structural elements during their fabrication. Mineral-impregnated Carbon-Fibre (MCF) composites represent a new type of non-corrosive reinforcement that offers great potential in this regard. MCF not only exhibits high performance with respect to its mechanical characteristics and durability, but it also can be processed and shaped easily in the fresh state and, what is more, automated. This article describes different concepts for the continuous, fully automated integration of MCF reinforcement into 3D concrete printing based on layered extrusion. Moreover, for one of the approaches presented and discussed, namely 3D concrete printing with MCF supply from a continuous, stationary impregnation line and deposition of MCF between concrete filaments, a feasibility study was performed using a gantry 3D printer. Small-scale walls were printed and eventually used for the production of specimens for mechanical testing. Three-point bend tests performed on two different beam geometries showed a significant enhancement of both flexural strength and, more especially, deformability of the specimens reinforced with MCF in comparison to the specimens made of plain concrete.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 2568 |
Fachzeitschrift | Materials |
Jahrgang | 13 |
Ausgabenummer | 11 |
Publikationsstatus | Veröffentlicht - 1 Juni 2020 |
Peer-Review-Status | Ja |
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- 3D concrete printing, Additive manufacturing, Carbon-fibre reinforcement, Digital construction, Layered extrusion