Exploiting Resiliency for Kernel-Wise CNN Approximation Enabled by Adaptive Hardware Design.

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Efficient low-power accelerators for Convolutional Neural Networks (CNNs) largely benefit from quantization and approximation, which are typically applied layer-wise for efficient hardware implementation. In this work, we present a novel strategy for efficient combination of these concepts at a deeper level, which is at each channel or kernel. We first apply layer-wise, low bit-width, linear quantization and truncation-based approximate multipliers to the CNN computation. Then, based on a state-of-the-art resiliency analysis, we are able to apply a kernel-wise approximation and quantization scheme with negligible accuracy losses, without further retraining. Our proposed strategy is implemented in a specialized framework for fast design space exploration. This optimization leads to a boost in estimated power savings of up to 34% in residual CNN architectures for image classification, compared to the base quantized architecture.

Details

OriginalspracheEnglisch
Titel2021 IEEE International Symposium on Circuits and Systems, ISCAS 2021 - Proceedings
Herausgeber (Verlag)IEEE Xplore
Seitenumfang5
ISBN (Print)978-1-7281-9201-7
PublikationsstatusVeröffentlicht - 2021
Peer-Review-StatusJa

Publikationsreihe

ReiheIEEE International Symposium on Circuits and Systems (ISCAS)
ISSN0271-4302

Externe IDs

Scopus 85109007056

Schlagworte

Forschungsprofillinien der TU Dresden

ASJC Scopus Sachgebiete

Schlagwörter

  • AI accelerator, Approximate computing, CNN inference, Kernel-wise optimization, Resiliency