Exploiting Resiliency for Kernel-Wise CNN Approximation Enabled by Adaptive Hardware Design.
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Efficient low-power accelerators for Convolutional Neural Networks (CNNs) largely benefit from quantization and approximation, which are typically applied layer-wise for efficient hardware implementation. In this work, we present a novel strategy for efficient combination of these concepts at a deeper level, which is at each channel or kernel. We first apply layer-wise, low bit-width, linear quantization and truncation-based approximate multipliers to the CNN computation. Then, based on a state-of-the-art resiliency analysis, we are able to apply a kernel-wise approximation and quantization scheme with negligible accuracy losses, without further retraining. Our proposed strategy is implemented in a specialized framework for fast design space exploration. This optimization leads to a boost in estimated power savings of up to 34% in residual CNN architectures for image classification, compared to the base quantized architecture.
Details
Originalsprache | Englisch |
---|---|
Titel | 2021 IEEE International Symposium on Circuits and Systems, ISCAS 2021 - Proceedings |
Herausgeber (Verlag) | IEEE Xplore |
Seitenumfang | 5 |
ISBN (Print) | 978-1-7281-9201-7 |
Publikationsstatus | Veröffentlicht - 2021 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | IEEE International Symposium on Circuits and Systems (ISCAS) |
---|---|
ISSN | 0271-4302 |
Externe IDs
Scopus | 85109007056 |
---|
Schlagworte
Forschungsprofillinien der TU Dresden
ASJC Scopus Sachgebiete
Schlagwörter
- AI accelerator, Approximate computing, CNN inference, Kernel-wise optimization, Resiliency