Exciton Diffusion and Halo Effects in Monolayer Semiconductors

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Marvin Kulig - , Universität Regensburg (Autor:in)
  • Jonas Zipfel - , Universität Regensburg (Autor:in)
  • Philipp Nagler - , Universität Regensburg (Autor:in)
  • Sofia Blanter - , Universität Regensburg (Autor:in)
  • Christian Schüller - , Universität Regensburg (Autor:in)
  • Tobias Korn - , Universität Regensburg (Autor:in)
  • Nicola Paradiso - , Universität Regensburg (Autor:in)
  • Mikhail M. Glazov - , RAS - Ioffe Physico Technical Institute (Autor:in)
  • Alexey Chernikov - , Universität Regensburg (Autor:in)

Abstract

We directly monitor exciton propagation in freestanding and SiO2-supported WS2 monolayers through spatially and time-resolved microphotoluminescence under ambient conditions. We find a highly nonlinear behavior with characteristic, qualitative changes in the spatial profiles of the exciton emission and an effective diffusion coefficient increasing from 0.3 to more than 30 cm2/s, depending on the injected exciton density. Solving the diffusion equation while accounting for Auger recombination allows us to identify and quantitatively understand the main origin of the increase in the observed diffusion coefficient. At elevated excitation densities, the initial Gaussian distribution of the excitons evolves into long-lived halo shapes with μm-scale diameter, indicating additional memory effects in the exciton dynamics.

Details

OriginalspracheEnglisch
Aufsatznummer207401
FachzeitschriftPhysical review letters
Jahrgang120
Ausgabenummer20
PublikationsstatusVeröffentlicht - 18 Mai 2018
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 29864294

Schlagworte

ASJC Scopus Sachgebiete