Evolutionary optimization of case-based forecasting algorithms in chaotic environments

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Alexander Musaev - , Technologisches Institut Sankt Petersburg (Autor:in)
  • Ekaterina Borovinskaya - , Professur für Thermodynamik, Technologisches Institut Sankt Petersburg (Autor:in)

Abstract

The problem of dynamic adaptation of prediction algorithms in chaotic environments based on identification of the situations-analogs in the database of retrospective observations is considered. Under conditions of symmetrical and unsymmetrical chaotic dynamics, traditional computational schemes of precedent prediction turn out to be ineffective. In this regard, a dynamic adaptation of precedent analysis algorithms based on the method of evolutionary modeling is proposed. Implementation of the computational precedent prediction scheme for chaotic processes as well as the evolutionary modeling method are described.

Details

OriginalspracheEnglisch
Aufsatznummer301
Seiten (von - bis)1-15
Seitenumfang15
FachzeitschriftSymmetry
Jahrgang13
Ausgabenummer2
PublikationsstatusVeröffentlicht - Feb. 2021
Peer-Review-StatusJa

Schlagworte

Schlagwörter

  • Chaotic environments, Evolutionary modeling, Prediction