Evolutionary optimization of case-based forecasting algorithms in chaotic environments
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
The problem of dynamic adaptation of prediction algorithms in chaotic environments based on identification of the situations-analogs in the database of retrospective observations is considered. Under conditions of symmetrical and unsymmetrical chaotic dynamics, traditional computational schemes of precedent prediction turn out to be ineffective. In this regard, a dynamic adaptation of precedent analysis algorithms based on the method of evolutionary modeling is proposed. Implementation of the computational precedent prediction scheme for chaotic processes as well as the evolutionary modeling method are described.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 301 |
Seiten (von - bis) | 1-15 |
Seitenumfang | 15 |
Fachzeitschrift | Symmetry |
Jahrgang | 13 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - Feb. 2021 |
Peer-Review-Status | Ja |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Chaotic environments, Evolutionary modeling, Prediction