Enzymatic machinery of wood-inhabiting fungi that degrade temperate tree species

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Lydia Kipping - , Coburg University (Autor:in)
  • Nico Jehmlich - , Helmholtz-Zentrum für Umweltforschung (UFZ) (Autor:in)
  • Julia Moll - , Helmholtz-Zentrum für Umweltforschung (UFZ) (Autor:in)
  • Matthias Noll - , Coburg University, Universität Bayreuth (Autor:in)
  • Martin M Gossner - , Swiss Federal Institute for Forest, Snow and Landscape Research, ETH Zurich (Autor:in)
  • Tim Van Den Bossche - , VIB-UGent Center for Medical Biotechnology, Ghent University (Autor:in)
  • Pascal Edelmann - , Technische Universität München (Autor:in)
  • Werner Borken - , Universität Bayreuth (Autor:in)
  • Martin Hofrichter - , Professur für Umweltbiotechnologie (Autor:in)
  • Harald Kellner - , Professur für Umweltbiotechnologie (Autor:in)

Abstract

Deadwood provides habitat for fungi and serves diverse ecological functions in forests. We already have profound knowledge of fungal assembly processes, physiological and enzymatic activities, and resulting physico-chemical changes during deadwood decay. However, in situ detection and identification methods, fungal origins, and a mechanistic understanding of the main lignocellulolytic enzymes are lacking. This study used metaproteomics to detect the main extracellular lignocellulolytic enzymes in 12 tree species in a temperate forest that have decomposed for 8 ½ years. Mainly white-rot (and few brown-rot) Basidiomycota were identified as the main wood decomposers, with Armillaria as the dominant genus; additionally, several soft-rot xylariaceous Ascomycota were identified. The key enzymes involved in lignocellulolysis included manganese peroxidase, peroxide-producing alcohol oxidases, laccase, diverse glycoside hydrolases (cellulase, glucosidase, xylanase), esterases, and lytic polysaccharide monooxygenases. The fungal community and enzyme composition differed among the 12 tree species. Ascomycota species were more prevalent in angiosperm logs than in gymnosperm logs. Regarding lignocellulolysis as a function, the extracellular enzyme toolbox acted simultaneously and was interrelated (e.g. peroxidases and peroxide-producing enzymes were strongly correlated), highly functionally redundant, and present in all logs. In summary, our in situ study provides comprehensive and detailed insight into the enzymatic machinery of wood-inhabiting fungi in temperate tree species. These findings will allow us to relate changes in environmental factors to lignocellulolysis as an ecosystem function in the future.

Details

OriginalspracheEnglisch
Aufsatznummerwrae050
FachzeitschriftThe ISME journal
Jahrgang18
Ausgabenummer1
PublikationsstatusVeröffentlicht - 19 März 2024
Peer-Review-StatusJa

Externe IDs

Scopus 85190904333
PubMed 38519103

Schlagworte

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Schlagwörter

  • Trees, Ascomycota, Fungi, Peroxides/metabolism, Wood/microbiology, Basidiomycota/physiology, Ecosystem