Enhanced Nanoconfinement of Copper-Organic Interfaces within Phthalocyanine Frameworks for Selective Electroreduction of CO to Acetate

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Quanquan Yang - , CAS - Ningbo Institute of Material Technology and Engineering, Zhejiang Sci-Tech University (Autor:in)
  • Yaqi Chen - , Zhejiang University (Autor:in)
  • Nengji Liu - , Zhejiang University (Autor:in)
  • Shengxu Li - , CAS - Ningbo Institute of Material Technology and Engineering (Autor:in)
  • Mengwei Chen - , CAS - Ningbo Institute of Material Technology and Engineering (Autor:in)
  • Wanzhen Zheng - , CAS - Ningbo Institute of Material Technology and Engineering, Zhejiang University (Autor:in)
  • Yubin Fu - , Center for Advancing Electronics Dresden (cfaed), Professur für Molekulare Funktionsmaterialien (cfaed) (Autor:in)
  • Junyi Han - , CAS - Ningbo Institute of Material Technology and Engineering (Autor:in)
  • Raul D. Rodriguez - , Tomsk Polytechnic University (Autor:in)
  • Yang Hou - , Zhejiang University (Autor:in)
  • Tao Zhang - , CAS - Ningbo Institute of Material Technology and Engineering (Autor:in)

Abstract

Acetate is an essential raw material in the chemical industry, supporting sustainable processes and efficient carbon utilization, driving interest in electrochemical CO-to-acetate conversion. However, this process is limited by catalyst instability and the complexity of the reaction pathway, making precise control difficult. Herein, we engineer nanoconfined copper-organic interfaces within a series of nucleophilic substituted heterocyclic copper phthalocyanine covalent organic frameworks (CuPc-COFs) with AA’ stacking configuration to selectively steer CO electroreduction toward acetate. This architecture stabilizes low-coordination Cu clusters─generated via partial reduction of phthalocyanine Cu sites─and fosters synergistic CuPc-Cu cluster interactions, creating an active interfacial microenvironment that enhances acetate selectivity. The optimized CuPc-COF achieves a Faradaic efficiency (FE) of 53.5% for acetate at −0.9 V vs RHE. Operando X-ray absorption spectroscopy (XAS) confirms the in situ formation of highly reactive copper-organic interfaces, while in situ FTIR spectroscopy and DFT calculations reveal that low-coordinated Cu clusters strengthen *CO bridge adsorption (*COB) and promote *COCO dimerization. Additionally, heterocyclic linkers provide electron donation, stabilizing the Cu clusters and improving the structural integrity. This work elucidates the critical role of nanoconfined interface engineering in C-C coupling and establishes a design paradigm for advanced CO electroreduction catalysts.

Details

OriginalspracheEnglisch
Seiten (von - bis)22132-22140
Seitenumfang9
FachzeitschriftJournal of the American Chemical Society
Jahrgang147
Ausgabenummer25
PublikationsstatusVeröffentlicht - 25 Juni 2025
Peer-Review-StatusJa

Externe IDs

PubMed 40499032