Employment of the covariance matrix in parameter estimation for stochastic processes in cell biology

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

The dynamics of movements of biological cells can be described with models from correlated stochastic processes. In order to overcome problems from correlated and insufficient data in the determination of the model parameters of such processes we employ the covariance matrix of the data. Since the covariance suffers itself from statistical uncertainty it is corrected by a renormalization treatment [1]. For the example of normal and fractional Brownian motion, which allows both to access all quantities on full theoretical grounds and to generate data similar to experiment, we discuss our results and those of previous works by Gregory [2] and Sivia [3]. The presented approach has the potential to estimate the aging correlation function of observed cell paths and can be applied to more complicated models.

Details

OriginalspracheEnglisch
TitelBayesian Inference and Maximum Entropy Methods in Science and Engineering - 32nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering
Seiten114-121
Seitenumfang8
PublikationsstatusVeröffentlicht - 2013
Peer-Review-StatusJa

Publikationsreihe

ReiheAIP Conference Proceedings
Band1553
ISSN0094-243X

Konferenz

Titel32nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, MaxEnt 2012
Dauer15 - 20 Juli 2012
StadtGarching
LandDeutschland

Externe IDs

ORCID /0000-0002-3564-0193/work/175220764

Schlagworte

ASJC Scopus Sachgebiete