EMG-Driven Machine Learning Control of a Soft Glove for Grasping Assistance and Rehabilitation

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Marek Sierotowicz - , Friedrich-Alexander-Universität Erlangen-Nürnberg, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Standort Oberpfaffenhofen (Erstautor:in)
  • Nicola Lotti - , Universität Heidelberg (Autor:in)
  • Laura Nell - , Universität Heidelberg (Autor:in)
  • Ryan Alicea - , Universität Heidelberg (Autor:in)
  • Xiaohui Zhang - , Universität Heidelberg (Autor:in)
  • Michele Xiloyannis - , ETH Zurich (Autor:in)
  • Rüdiger Rupp - , Universitätsklinikum Heidelberg (Autor:in)
  • Emese Papp - , Professur für Technisches Design (Autor:in)
  • Jens Krzywinski - , Disruption and Societal Change Center (TUDiSC), Professur für Technisches Design (Autor:in)
  • Claudio Castellini - , Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Standort Oberpfaffenhofen, Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Lorenzo Masia - , Universität Heidelberg (Letztautor:in)

Abstract

In the field of rehabilitation robotics, transparent, precise and intuitive control of hand exoskeletons still represents a substantial challenge. In particular, the use of compliant systems often leads to a trade-off between lightness and material flexibility, and control precision. In this letter, we present a compliant, actuated glove with a control scheme to detectthe user's motion intent, which is estimated by a machine learning algorithm based on muscle activity. Six healthy study participants used the glove in three assistance conditions during a force reaching task. The results suggest that active assistance from the glove can aid the user, reducing the muscular activity needed to attain a medium-high grasp force, and that closed-loop control of a compliant assistive glove can successfully be implemented by means of a machine learning algorithm.

Details

OriginalspracheEnglisch
Seiten (von - bis)1566-1573
Seitenumfang8
FachzeitschriftIEEE Robotics and Automation Letters
Jahrgang7
Ausgabenummer2
PublikationsstatusVeröffentlicht - Apr. 2022
Peer-Review-StatusJa

Externe IDs

Scopus 85122566908
ORCID /0009-0004-1383-8141/work/153654646
ORCID /0000-0003-2862-9196/work/153655320