Embracing approximate computing for energy-efficient motion estimation in high efficiency video coding
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Approximate Computing is an emerging paradigm for developing highly energy-efficient computing systems. It leverages the inherent resilience of applications to trade output quality with energy efficiency. In this paper, we present a novel approximate architecture for energy-efficient motion estimation (ME) in high efficiency video coding (HEVC). We synthesized our designs for both ASIC and FPGA design flows. ModelSim gate-level simulations are used for functional and timing verification. We comprehensively analyze the impact of heterogeneous approximation modes on the power/energy-quality tradeoffs for various video sequences. To facilitate reproducible results for comparisons and further research and development, the RTL and behavioral models of approximate SAD architectures and constituting approximate modules are made available at https://sourceforge.net/projects/lpaclib/.
Details
Originalsprache | Englisch |
---|---|
Titel | Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017 |
Erscheinungsort | Lausanne |
Herausgeber (Verlag) | IEEE Xplore |
Seiten | 1384-1389 |
Seitenumfang | 6 |
ISBN (elektronisch) | 978-3-9815370-8-6, 978-3-9815370-9-3 |
ISBN (Print) | 978-1-5090-5826-6 |
Publikationsstatus | Veröffentlicht - 11 Mai 2017 |
Peer-Review-Status | Ja |
Publikationsreihe
Reihe | Design, Automation and Test in Europe Conference and Exhibition (DATE) |
---|---|
ISSN | 1530-1591 |
Konferenz
Titel | 20th Design, Automation and Test in Europe, DATE 2017 |
---|---|
Dauer | 27 - 31 März 2017 |
Stadt | Swisstech, Lausanne |
Land | Schweiz |
Schlagworte
Forschungsprofillinien der TU Dresden
Ziele für nachhaltige Entwicklung
ASJC Scopus Sachgebiete
Schlagwörter
- Approximate computing, Energy efficiency, Hardware accelerator, HEVC, Motion estimation, Video coding