Efficient Post-training Augmentation for Adaptive Inference in Heterogeneous and Distributed IoT Environments

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Early Exit Neural Networks (EENNs) achieve enhanced efficiency compared to traditional models, but creating them is challenging due to the many additional design choices required. To address this, we propose an automated augmentation flow that converts existing models into EENNs, making all necessary design decisions for deployment on heterogeneous or distributed embedded targets. Our framework is the first to perform all these steps, including EENN architecture construction, subgraph mapping, and decision mechanism configuration. We evaluated our approach on embedded Deep Learning scenarios, achieving significant performance improvements. Our solution reduced latency by 65.95% on a speech command detection problem and mean operations per inference by 78.3% on an ECG classification task. This showcases the potential for EENNs in embedded applications.

Details

OriginalspracheEnglisch
TitelEmbedded Computer Systems: Architectures, Modeling, and Simulation
Redakteure/-innenLuigi Carro, Francesco Regazzoni, Christian Pilato
Herausgeber (Verlag)Springer Science and Business Media B.V.
Seiten99-108
Seitenumfang10
ISBN (elektronisch)978-3-031-78380-7
ISBN (Print)978-3-031-78379-1
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Publikationsreihe

ReiheLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band15227 LNCS
ISSN0302-9743

Konferenz

Titel24th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation
KurztitelSAMOS 2024
Veranstaltungsnummer24
Dauer29 Juni - 4 Juli 2024
Webseite
OrtDoryssa Seaside Resort
StadtPythagorion
LandGriechenland

Schlagworte

Schlagwörter

  • Deep Learning, Early Exit Neural Networks, Network Architecture Search