Efficient failure information propagation under complex stress states in fiber reinforced polymers: From micro- to meso-scale using machine learning

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

The failure behavior of fiber reinforced polymers (FRP) is strongly influenced by their microstructure, i.e. fiber arrangement or local fiber volume content. However, this information cannot be directly used for structural analyses, since it requires a discretization on micrometer level. Therefore, current failure theories do not directly account for such effects, but describe the behavior averaged over an entire specimen. This foundation in experimentally accessible loading conditions leads to purely theory based extension to more complex stress states without direct validation possibilities. This work aims at leveraging micro-scale simulations to obtain failure information under arbitrary loading conditions. The results are propagated to the meso-scale, enabling efficient structural analyses, by means of machine learning (ML). It is shown that the ML model is capable of correctly assessing previously unseen stress states and therefore poses an efficient tool of exploiting information from the micro-scale in larger simulations.

Details

OriginalspracheEnglisch
TitelSheet Metal 2025
Redakteure/-innenG. Meschut, M. Bobbert, J. Duflou, L. Fratini, H. Hagenah, P. Martins, M. Merklein, F. Micari
Herausgeber (Verlag)Materials Research Forum LLC, Materials Research Foundations
Seiten260-267
Seitenumfang8
ISBN (elektronisch)978-1-64490-355-1
ISBN (Print)978-1-64490-354-4
PublikationsstatusVeröffentlicht - 1 Apr. 2025
Peer-Review-StatusJa

Publikationsreihe

Reihe Materials Research Proceedings
Band52
ISSN2474-3941

Konferenz

Titel21st International Conference on Sheet Metal
KurztitelSheMet 2025
Veranstaltungsnummer21
Dauer1 - 3 April 2025
Webseite
OrtBest Western Plus Arosa Hotel
StadtPaderborn
LandDeutschland

Externe IDs

ORCID /0000-0003-2653-7546/work/182332169
ORCID /0000-0003-1370-064X/work/182334085
ORCID /0000-0002-0169-8602/work/182335353
Scopus 105005081989

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Failure, Fiber Reinforced Plastic, Machine Learning