Effect of Spatial, Temporal and Network Features on Uplink and Downlink Throughput Prediction

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

  • Alexandros Palaios - , Ericsson AB (Autor:in)
  • Christian Vielhaus - , Deutsche Telekom Professur für Kommunikationsnetze (Autor:in)
  • Daniel F. Kulzer - , BMW Group (Autor:in)
  • Philipp Geuer - , Ericsson AB (Autor:in)
  • Raja Sattiraju - , Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau (Autor:in)
  • Jochen Fink - , Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut (Autor:in)
  • Martin Kasparick - , Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut (Autor:in)
  • Cara Watermann - , Ericsson AB (Autor:in)
  • Gerhard Fettweis - , Vodafone Stiftungsprofessur für Mobile Nachrichtensysteme (Autor:in)
  • Frank H.P. Fitzek - , Deutsche Telekom Professur für Kommunikationsnetze (Autor:in)
  • Hans D. Schotten - , Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau (Autor:in)
  • Slawomir Stanczak - , Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, Technische Universität Berlin (Autor:in)

Abstract

Recently, there have been many attempts to apply Machine Learning (ML)-based prediction mechanisms In wireless networks. One open question is how reliable such predictions can be, and how well ML models can learn from the radio environment. In this paper, we present initial results on Quality of Service (QoS) prediction using the example of throughput prediction. We focus on suggesting new sets of features that can improve the prediction performance for different prediction horizons. Thereby, we identify important features that have a large impact when using radio environment data as input for ML models. To this end, we consider information from space, time, and network domains. In particular, we show that features, such as cell throughput and previous users' data can significantly improve the ML model performance. Besides the importance of input features, we also investigate how the prediction performance deteriorates for different prediction horizons.

Details

OriginalspracheEnglisch
TitelProceedings - 2021 IEEE 4th 5G World Forum, 5GWF 2021
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten418-423
Seitenumfang6
ISBN (elektronisch)9781665443081
PublikationsstatusVeröffentlicht - 2021
Peer-Review-StatusJa

Publikationsreihe

ReiheProceedings - 2021 IEEE 4th 5G World Forum, 5GWF 2021

Konferenz

Titel2021 IEEE 4th IEEE 5G World Forum
Untertitel5G and Beyond: A Comprehensive Look at Future Networks
Kurztitel5GWF 2021
Veranstaltungsnummer4
Dauer13 - 15 Oktober 2021
Webseite
Ortonline
LandKanada

Externe IDs

ORCID /0000-0001-8469-9573/work/161891171

Schlagworte

Schlagwörter

  • Artificial Intelligence, High Mobility, Machine Learning, Quality of Service, Throughput Prediction